Open Access

Some properties of the generalized Apostol-type polynomials

Boundary Value Problems20132013:64

DOI: 10.1186/1687-2770-2013-64

Received: 10 December 2012

Accepted: 19 March 2013

Published: 28 March 2013

Abstract

In this paper, we study some properties of the generalized Apostol-type polynomials (see (Luo and Srivastava in Appl. Math. Comput. 217:5702-5728, 2011)), including the recurrence relations, the differential equations and some other connected problems, which extend some known results. We also deduce some properties of the generalized Apostol-Euler polynomials, the generalized Apostol-Bernoulli polynomials, and Apostol-Genocchi polynomials of high order.

MSC:11B68, 33C65.

Keywords

generalized Apostol type polynomials recurrence relations differential equations connected problems quasi-monomial

1 Introduction, definitions and motivation

The classical Bernoulli polynomials B n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq1_HTML.gif, the classical Euler polynomials E n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq2_HTML.gif and the classical Genocchi polynomials G n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq3_HTML.gif, together with their familiar generalizations B n ( α ) ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq4_HTML.gif, E n ( α ) ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq5_HTML.gif and G n ( α ) ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq6_HTML.gif of (real or complex) order α, are usually defined by means of the following generating functions (see, for details, [1], pp.532-533 and [2], p.61 et seq.; see also [3] and the references cited therein):
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ1_HTML.gif
(1.1)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ2_HTML.gif
(1.2)
and
( 2 z e z + 1 ) α e x z = n = 0 G n ( α ) ( x ) z n n ! ( | z | < π ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ3_HTML.gif
(1.3)
So that, obviously, the classical Bernoulli polynomials B n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq1_HTML.gif, the classical Euler polynomials E n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq2_HTML.gif and the classical Genocchi polynomials G n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq3_HTML.gif are given, respectively, by
B n ( x ) : = B n ( 1 ) ( x ) , E n ( x ) : = E n ( 1 ) ( x ) and G n ( x ) : = G n ( 1 ) ( x ) ( n N 0 ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ4_HTML.gif
(1.4)
For the classical Bernoulli numbers B n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq7_HTML.gif, the classical Euler numbers E n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq8_HTML.gif and the classical Genocchi numbers G n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq9_HTML.gif of order n, we have
B n : = B n ( 0 ) = B n ( 1 ) ( 0 ) , E n : = E n ( 0 ) = E n ( 1 ) ( 0 ) and G n : = G n ( 0 ) = G n ( 1 ) ( 0 ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ5_HTML.gif
(1.5)

respectively.

Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol (see [4], p.165, Eq. (3.1)) and (more recently) by Srivastava (see [5], pp.83-84). We begin by recalling here Apostol’s definitions as follows.

Definition 1.1 (Apostol [4]; see also Srivastava [5])

The Apostol-Bernoulli polynomials B n ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq10_HTML.gif ( λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif) are defined by means of the following generating function:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ6_HTML.gif
(1.6)
with, of course,
B n ( x ) = B n ( x ; 1 ) and B n ( λ ) : = B n ( 0 ; λ ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ7_HTML.gif
(1.7)

where B n ( λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq12_HTML.gif denotes the so-called Apostol-Bernoulli numbers.

Recently, Luo and Srivastava [6] further extended the Apostol-Bernoulli polynomials as the so-called Apostol-Bernoulli polynomials of order α.

Definition 1.2 (Luo and Srivastava [6])

The Apostol-Bernoulli polynomials B n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq13_HTML.gif ( λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif) of order α N 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq14_HTML.gif are defined by means of the following generating function:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ8_HTML.gif
(1.8)
with, of course,
B n ( α ) ( x ) = B n ( α ) ( x ; 1 ) and B n ( α ) ( λ ) : = B n ( α ) ( 0 ; λ ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ9_HTML.gif
(1.9)

where B n ( α ) ( λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq15_HTML.gif denotes the so-called Apostol-Bernoulli numbers of order α.

On the other hand, Luo [7], gave an analogous extension of the generalized Euler polynomials as the so-called Apostol-Euler polynomials of order α.

Definition 1.3 (Luo [7])

The Apostol-Euler polynomials E n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq16_HTML.gif ( λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif) of order α N 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq14_HTML.gif are defined by means of the following generating function:
( 2 λ e z + 1 ) α e x z = n = 0 E n ( α ) ( x ; λ ) z n n ! ( | z | < | log ( λ ) | ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ10_HTML.gif
(1.10)
with, of course,
E n ( α ) ( x ) = E n ( α ) ( x ; 1 ) and E n ( α ) ( λ ) : = E n ( α ) ( 0 ; λ ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ11_HTML.gif
(1.11)

where E n ( α ) ( λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq17_HTML.gif denotes the so-called Apostol-Euler numbers of order α.

On the subject of the Genocchi polynomials G n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq3_HTML.gif and their various extensions, a remarkably large number of investigations have appeared in the literature (see, for example, [814]). Moreover, Luo (see [1214]) introduced and investigated the Apostol-Genocchi polynomials of (real or complex) order α, which are defined as follows:

Definition 1.4 The Apostol-Genocchi polynomials G n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq18_HTML.gif ( λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif) of order α N 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq14_HTML.gif are defined by means of the following generating function:
( 2 z λ e z + 1 ) α e x z = n = 0 G n ( α ) ( x ; λ ) z n n ! ( | z | < | log ( λ ) | ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ12_HTML.gif
(1.12)
with, of course,
G n ( α ) ( x ) = G n ( α ) ( x ; 1 ) , G n ( α ) ( λ ) : = G n ( α ) ( 0 ; λ ) , G n ( x ; λ ) : = G n ( 1 ) ( x ; λ ) and G n ( λ ) : = G n ( 1 ) ( λ ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ13_HTML.gif
(1.13)

where G n ( λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq19_HTML.gif, G n ( α ) ( λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq20_HTML.gif and G n ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq21_HTML.gif denote the so-called Apostol-Genocchi numbers, the Apostol-Genocchi numbers of order α and the Apostol-Genocchi polynomials, respectively.

Recently, Luo and Srivastava [15] introduced a unification (and generalization) of the above-mentioned three families of the generalized Apostol type polynomials.

Definition 1.5 (Luo and Srivastava [15])

The generalized Apostol type polynomials F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq22_HTML.gif ( α N 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq14_HTML.gif, λ , u , v C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq23_HTML.gif) of order α are defined by means of the following generating function:
( 2 u z v λ e z + 1 ) α e x z = n = 0 F n ( α ) ( x ; λ ; u , v ) z n n ! ( | z | < | log ( λ ) | ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ14_HTML.gif
(1.14)
where
F n ( α ) ( λ ; u , v ) : = F n ( α ) ( 0 ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ15_HTML.gif
(1.15)

denote the so-called Apostol type numbers of order α.

So that, by comparing Definition 1.5 with Definitions 1.2, 1.3 and 1.4, we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ16_HTML.gif
(1.16)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ17_HTML.gif
(1.17)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ18_HTML.gif
(1.18)
A polynomial p n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq24_HTML.gif ( n N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq25_HTML.gif, x C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq26_HTML.gif) is said to be a quasi-monomial [16], whenever two operators M ˆ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq27_HTML.gif, P ˆ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq28_HTML.gif, called multiplicative and derivative (or lowering) operators respectively, can be defined in such a way that
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ19_HTML.gif
(1.19)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ20_HTML.gif
(1.20)
which can be combined to get the identity
M ˆ P ˆ p n ( x ) = n p n ( x ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ21_HTML.gif
(1.21)
The Appell polynomials [17] can be defined by considering the following generating function:
A ( t ) e x t = n = 0 R n ( x ) n ! t n , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ22_HTML.gif
(1.22)
where
A ( t ) = k = 0 R k k ! t k ( A ( 0 ) 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ23_HTML.gif
(1.23)

is analytic function at t = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq29_HTML.gif.

From [18], we know that the multiplicative and derivative operators of R n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq30_HTML.gif are
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ24_HTML.gif
(1.24)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ25_HTML.gif
(1.25)
where
A ( t ) A ( t ) = n = 0 α n t n n ! . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ26_HTML.gif
(1.26)

By using (1.21), we have the following lemma.

Lemma 1.6 ([18])

The Appell polynomials R n ( x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq30_HTML.gif defined by (1.22) satisfy the differential equation:
α n 1 ( n 1 ) ! y ( n ) + α n 2 ( n 2 ) ! y ( n 1 ) + + α 1 1 ! y + ( x + α 0 ) y n y = 0 , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ27_HTML.gif
(1.27)
where the numerical coefficients α k https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq31_HTML.gif, k = 1 , 2 , , n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq32_HTML.gif are defined in (1.26), and are linked to the values R k https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq33_HTML.gif by the following relations:
R k + 1 = h = 0 k ( k h ) R h α k h . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equa_HTML.gif
Let P https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq34_HTML.gif be the vector space of polynomials with coefficients in . A polynomial sequence { P n } n 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq35_HTML.gif be a polynomial set. { P n } n 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq35_HTML.gif is called a σ-Appell polynomial set of transfer power series A is generated by
G ( x , t ) = A ( t ) G 0 ( x , t ) = n = 0 P n ( x ) n ! t n , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ28_HTML.gif
(1.28)
where G 0 ( x , t ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq36_HTML.gif is a solution of the system:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equb_HTML.gif

In [19], the authors investigated the connection coefficients between two polynomials. And there is a result about connection coefficients between two σ-Appell polynomial sets.

Lemma 1.7 ([19])

Let σ Λ ( 1 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq37_HTML.gif. Let { P n } n 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq38_HTML.gif and { Q n } n 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq39_HTML.gif be two σ-Appell polynomial sets of transfer power series, respectively, A 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq40_HTML.gif and A 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq41_HTML.gif. Then
Q n ( x ) = m = 0 n n ! m ! α n m P m ( x ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ29_HTML.gif
(1.29)
where
A 2 ( t ) A 1 ( t ) = k = 0 α k t k . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equc_HTML.gif

In recent years, several authors obtained many interesting results involving the related Bernoulli polynomials and Euler polynomials [5, 2040]. And in [29], the authors studied some series identities involving the generalized Apostol type and related polynomials.

In this paper, we study some other properties of the generalized Apostol type polynomials F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq42_HTML.gif, including the recurrence relations, the differential equations and some connection problems, which extend some known results. As special, we obtain some properties of the generalized Apostol-Euler polynomials, the generalized Apostol-Bernoulli polynomials and Apostol-Genocchi polynomials of high order.

2 Recursion formulas and differential equations

From the generating function (1.14), we have
x F n ( α ) ( x ; λ ; u , v ) = n F n 1 ( α ) ( x ; λ ; u , v ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ30_HTML.gif
(2.1)

A recurrence relation for the generalized Apostol type polynomials is given by the following theorem.

Theorem 2.1 For any integral n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq43_HTML.gif, λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif and α N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq44_HTML.gif, the following recurrence relation for the generalized Apostol type polynomials F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq22_HTML.gif holds true:
( α v n + 1 1 ) F n + 1 ( α ) ( x ; λ ; u , v ) = α λ 2 u n ! ( n + v ) ! F n + v ( α + 1 ) ( x + 1 ; λ ; u , v ) x F n ( α ) ( x ; λ ; u , v ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ31_HTML.gif
(2.2)

Proof Differentiating both sides of (1.14) with respect to t, and using some elementary algebra and the identity principle of power series, recursion (2.2) easily follows. □

By setting λ : = λ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq45_HTML.gif, u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 2.1, and then multiplying ( 1 ) α https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq48_HTML.gif on both sides of the result, we have:

Corollary 2.2 For any integral n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq43_HTML.gif, λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif and α N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq44_HTML.gif, the following recurrence relation for the generalized Apostol-Bernoulli polynomials B n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq49_HTML.gif holds true:
[ α ( n + 1 ) ] B n + 1 ( α ) ( x ; λ ) = α λ B n + 1 ( α + 1 ) ( x + 1 ; λ ) x B n ( α ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ32_HTML.gif
(2.3)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq51_HTML.gif in Theorem 2.1, we have the following corollary.

Corollary 2.3 For any integral n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq43_HTML.gif, λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif and α N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq44_HTML.gif, the following recurrence relation for the generalized Apostol-Euler polynomials E n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq16_HTML.gif holds true:
E n + 1 ( α ) ( x ; λ ) = x E n ( α ) ( x ; λ ) α λ 2 E n ( α + 1 ) ( x + 1 ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ33_HTML.gif
(2.4)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 2.1, we have the following corollary.

Corollary 2.4 For any integral n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq43_HTML.gif, λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif and α N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq44_HTML.gif, the following recurrence relation for the generalized Apostol-Genocchi polynomials G n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq18_HTML.gif holds true:
2 [ α ( n + 1 ) ] G n + 1 ( α ) ( x ; λ ) = α λ G n + 1 ( α + 1 ) ( x + 1 ; λ ) 2 ( n + 1 ) x G n ( α ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ34_HTML.gif
(2.5)
From (1.14) and (1.22), we know that the generalized Appostol type polynomials F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq42_HTML.gif is Appell polynomials with
A ( t ) = ( 2 u t v λ e t + 1 ) α . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ35_HTML.gif
(2.6)
From the Eq. (23) of [15], we know that G 0 ( 1 ; λ ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq52_HTML.gif. So from (2.6) and (1.12), we can obtain that if v = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq51_HTML.gif, we have
A ( t ) A ( t ) = λ α 2 n = 0 G n + 1 ( 1 ; λ ) n + 1 t n n ! . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ36_HTML.gif
(2.7)
By using (1.24) and (1.26), we can obtain the multiplicative and derivative operators of the generalized Appostol type polynomials F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq22_HTML.gif
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ37_HTML.gif
(2.8)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ38_HTML.gif
(2.9)
From (2.1), we can obtain
p x p F n ( α ) ( x ; λ ; u , v ) = n ! ( n p ) ! F n p ( α ) ( x ; λ ; u , v ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ39_HTML.gif
(2.10)

Then by using (1.20), (2.8) and (2.10), we obtain the following result.

Theorem 2.5 For any integral n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq43_HTML.gif, λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif and α N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq44_HTML.gif, the following recurrence relation for the generalized Apostol type polynomials F n ( α ) ( x ; λ ; u , 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq53_HTML.gif holds true:
F n + 1 ( α ) ( x ; λ ; u , 0 ) = ( x + λ α 2 G 1 ( 1 ; λ ) ) F n ( α ) ( x ; λ ; u , 0 ) + λ α 2 k = 0 n 1 ( n k ) G n k + 1 ( 1 ; λ ) n k + 1 F n k ( α ) ( x ; λ ; u , 0 ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ40_HTML.gif
(2.11)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif in Theorem 2.5, we have the following corollary.

Corollary 2.6 For any integral n 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq43_HTML.gif, λ C https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq11_HTML.gif and α N https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq44_HTML.gif, the following recurrence relation for the generalized Apostol-Euler polynomials E n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq54_HTML.gif holds true:
E n + 1 ( α ) ( x ; λ ) = ( x + λ α 2 G 1 ( 1 ; λ ) ) E n ( α ) ( x ; λ ) + λ α 2 k = 0 n 1 ( n k ) G n k + 1 ( 1 ; λ ) n k + 1 E n k ( α ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ41_HTML.gif
(2.12)

Furthermore, applying Lemma 1.7 to F n ( α ) ( x ; λ ; u , 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq55_HTML.gif, we have the following theorem.

Theorem 2.7 The generalized Apostol type polynomials F n ( α ) ( x ; λ ; u , 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq55_HTML.gif satisfy the differential equation:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ42_HTML.gif
(2.13)

Specially, by setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif in Theorem 2.7, then we have the following corollary.

Corollary 2.8 The generalized Apostol-Euler polynomials E n ( α ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq54_HTML.gif satisfy the differential equation:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ43_HTML.gif
(2.14)

3 Connection problems

From (1.14) and (1.28), we know that the generalized Apostol type polynomials F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq56_HTML.gif are a D x https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq57_HTML.gif-Appell polynomial set, where D x https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq57_HTML.gif denotes the derivative operator.

From Table 1 in [19], we know that the derivative operators of monomials x n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq58_HTML.gif and the Gould-Hopper polynomials g n m ( x , h ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq59_HTML.gif [30] are all D x https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq57_HTML.gif. And their transfer power series A ( t ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq60_HTML.gif are 1 and e h t m https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq61_HTML.gif, respectively.

Applying Lemma 1.7 to P n ( x ) = x n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq62_HTML.gif and Q n ( x ) = F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq63_HTML.gif, we have the following theorem.

Theorem 3.1
F n ( α ) ( x ; λ ; u , v ) = m = 0 n ( n m ) F n m ( α ) ( λ ; u , v ) x m , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ44_HTML.gif
(3.1)

where F n ( α ) ( λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq64_HTML.gif is the so-called Apostol type numbers of order α defined by (1.15).

By setting λ : = λ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq45_HTML.gif, u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.1, and then multiplying ( 1 ) α https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq48_HTML.gif on both sides of the result, we have the following corollary.

Corollary 3.2
B n ( α ) ( x ; λ ) = m = 0 n ( n m ) B n m ( α ) ( λ ) x m , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ45_HTML.gif
(3.2)

which is just Eq. (3.1) of [23].

By setting u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq51_HTML.gif in Theorem 3.1, we have the following corollary.

Corollary 3.3
E n ( α ) ( x ; λ ) = m = 0 n ( n m ) E n m ( α ) ( λ ) x m . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ46_HTML.gif
(3.3)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.1, we have the following corollary.

Corollary 3.4
G n ( α ) ( x ; λ ) = m = 0 n ( n m ) G n m ( α ) ( λ ) x m , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ47_HTML.gif
(3.4)

which is just Eq. (24) of [15].

Applying Lemma 1.7 to P n ( x ) = F n ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq65_HTML.gif and Q n ( x ) = F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq63_HTML.gif, we have the following theorem.

Theorem 3.5
F n ( α ) ( x ; λ ; u , v ) = m = 0 n ( n m ) F n m ( α 1 ) ( λ ; u , v ) F m ( x ; λ ; u , v ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ48_HTML.gif
(3.5)

where F n ( α ) ( λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq64_HTML.gif is the so-called Apostol type numbers of order α defined by (1.15).

By setting λ : = λ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq45_HTML.gif, u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.5, and then multiplying ( 1 ) α https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq48_HTML.gif on both sides of the result, we have the following corollary.

Corollary 3.6
B n ( α ) ( x ; λ ) = m = 0 n ( n m ) B n m ( α 1 ) ( λ ) B m ( x ; λ ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ49_HTML.gif
(3.6)

which is just Eq. (3.2) of [23].

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq51_HTML.gif in Theorem 3.5, we have the following corollary.

Corollary 3.7
E n ( α ) ( x ; λ ) = m = 0 n ( n m ) E n m ( α 1 ) ( λ ) E m ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ50_HTML.gif
(3.7)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.5, we have the following corollary.

Corollary 3.8
G n ( α ) ( x ; λ ) = m = 0 n ( n m ) G n m ( α 1 ) ( λ ) G m ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ51_HTML.gif
(3.8)

Applying Lemma 1.7 to P n ( x ) = g n m ( x , h ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq66_HTML.gif and Q n ( x ) = F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq63_HTML.gif, we have the following theorem.

Theorem 3.9
F n ( α ) ( x ; λ ; u , v ) = r = 0 n n ! r ! [ k = 0 [ ( n r ) / m ] ( 1 ) k h k k ! ( n r m k ) ! F n r m k ( α ) ( λ ; u , v ) ] g r m ( x , h ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ52_HTML.gif
(3.9)

By setting λ : = λ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq45_HTML.gif, u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.9, and then multiplying ( 1 ) α https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq48_HTML.gif on both sides of the result, we have the following corollary.

Corollary 3.10
B n ( α ) ( x ; λ ) = r = 0 n n ! r ! [ k = 0 [ ( n r ) / m ] ( 1 ) k h k k ! ( n r m k ) ! B n r m k ( α ) ( λ ) ] g r m ( x , h ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ53_HTML.gif
(3.10)

which is just Eq. (3.3) of [23].

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq51_HTML.gif in Theorem 3.9, we have the following corollary.

Corollary 3.11
E n ( α ) ( x ; λ ) = r = 0 n n ! r ! [ k = 0 [ ( n r ) / m ] ( 1 ) k h k k ! ( n r m k ) ! E n r m k ( α ) ( λ ) ] g r m ( x , h ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ54_HTML.gif
(3.11)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.9, we have the following corollary.

Corollary 3.12
G n ( α ) ( x ; λ ) = r = 0 n n ! r ! [ k = 0 [ ( n r ) / m ] ( 1 ) k h k k ! ( n r m k ) ! G n r m k ( α ) ( λ ) ] g r m ( x , h ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ55_HTML.gif
(3.12)

When v α = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq67_HTML.gif, applying Lemma 1.7 to P n ( x ) = E n ( α 1 ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq68_HTML.gif and Q n ( x ) = F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq63_HTML.gif, we have the following theorem.

Theorem 3.13 If v α = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq69_HTML.gif, then we have
F n ( α ) ( x ; λ ; u , v ) = m = 0 n ( n m ) 2 ( u 1 ) α G n m ( λ ) E m ( α 1 ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ56_HTML.gif
(3.13)

By setting λ : = λ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq45_HTML.gif, u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.13, and then multiplying ( 1 ) α https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq48_HTML.gif on both sides of the result, we have the following corollary.

Corollary 3.14
B n ( x ; λ ) = 1 2 m = 0 n ( n m ) G n m ( λ ) x m . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ57_HTML.gif
(3.14)

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.13, we have the following corollary.

Corollary 3.15
G n ( x ; λ ) = 1 2 m = 0 n ( n m ) G n m ( λ ) x m , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ58_HTML.gif
(3.15)

which is just the case of α = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq70_HTML.gif in (3.4).

When v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif or α = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq71_HTML.gif, applying Lemma 1.7 to P n ( x ) = G n ( α 1 ) ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq72_HTML.gif and Q n ( x ) = F n ( α ) ( x ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq73_HTML.gif, we can obtain the following theorem.

Theorem 3.16 If v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif or α = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq71_HTML.gif, we have
F n ( α ) ( x ; λ ; u , v ) = m = 0 n ( n m ) 2 ( u 1 ) α G n m ( λ ) G m ( α 1 ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ59_HTML.gif
(3.16)

By setting λ : = λ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq45_HTML.gif, u = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq46_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.13, and then multiplying ( 1 ) α https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq48_HTML.gif on both sides of the result, we have the following corollary.

Corollary 3.17
B n ( α ) ( x ; λ ) = m = 0 n ( n m ) ( 1 2 ) α G n m ( λ ) G m ( α 1 ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ60_HTML.gif
(3.17)

When α = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq70_HTML.gif in (3.17), it is just (3.15).

By setting u = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq50_HTML.gif and v = 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq47_HTML.gif in Theorem 3.16, we have the following corollary.

Corollary 3.18
G n ( α ) ( x ; λ ) = m = 0 n ( n m ) G n m ( λ ) G m ( α 1 ) ( x ; λ ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ61_HTML.gif
(3.18)

which is equal to (3.8).

If α = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq71_HTML.gif in Theorem 3.16, we have:

Corollary 3.19
x n = m = 0 n ( n m ) G n m ( λ ) G m ( 1 ) ( x ; λ ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ62_HTML.gif
(3.19)

4 Hermite-based generalized Apostol type polynomials

Finally, we give a generation of the generalized Apostol type polynomials.

The two-variable Hermite-Kampé de Fériet polynomials (2VHKdFP) H n ( x , y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq74_HTML.gif are defined by the series [31]
H n ( x , y ) = n ! r = 0 [ n / 2 ] x n 2 r y r r ! ( n 2 r ) ! https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ63_HTML.gif
(4.1)
with the following generating function:
exp ( x t + y t 2 ) = n = 0 t n n ! H n ( x , y ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ64_HTML.gif
(4.2)
And the 2VHKdFP H n ( x , y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq74_HTML.gif are also defined through the operational identity
exp ( y 2 x 2 ) { x n } = H n ( x , y ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ65_HTML.gif
(4.3)
Acting the operator exp ( y 2 x 2 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq75_HTML.gif on (1.14), and by the identity [32]
exp ( y 2 x 2 ) { exp ( a x 2 + b x ) } = 1 1 + 4 a y exp ( a x 2 b x b 2 y 1 + 4 a y ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ66_HTML.gif
(4.4)
we define the Hermite-based generalized Apostol type polynomials F n ( α ) H ( x , y ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq76_HTML.gif by the generating function
( 2 u z v λ e t + 1 ) α e x t + y t 2 = n = 0 H F n ( α ) ( x , y ; λ ; u , v ) t n n ! ( | t | < | log ( λ ) | ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ67_HTML.gif
(4.5)
Clearly, we have
F n H ( x , y ; λ ; u , v ) = H F n ( 1 ) ( x , y ; λ ; u , v ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equd_HTML.gif
From the generating function (4.5), we easily obtain
x H F n ( α ) ( x , y ; λ ; u , v ) = n H F n 1 ( α ) ( x , y ; λ ; u , v ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ68_HTML.gif
(4.6)
and
y H F n ( α ) ( x , y ; λ ; u , v ) = n ( n 1 ) H F n 2 ( α ) ( x , y ; λ ; u , v ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ69_HTML.gif
(4.7)
which can be combined to get the identity
2 x 2 H F n ( α ) ( x , y ; λ ; u , v ) = y H F n ( α ) ( x , y ; λ ; u , v ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ70_HTML.gif
(4.8)
Acting with the operator exp y 2 x 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq77_HTML.gif on both sides of (3.1), (3.5), (3.13), (3.18), and by using (4.3), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ71_HTML.gif
(4.9)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ72_HTML.gif
(4.10)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ73_HTML.gif
(4.11)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Equ74_HTML.gif
(4.12)
where E n ( α ) H ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq78_HTML.gif and G n ( α ) H ( x ; λ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_IEq79_HTML.gif are the Hermite-based generalized Apostol-Euler polynomials and the Hermite-based generalized Apostol-Genocchi polynomials respectively, defined by the following generating functions:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-64/MediaObjects/13661_2012_Article_321_Eque_HTML.gif

Declarations

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The present investigation was supported, in part, by the National Natural Science Foundation of China under Grant 11226281, Fund of Science and Innovation of Yangzhou University, China under Grant 2012CXJ005, Research Project of Science and Technology of Chongqing Education Commission, China under Grant KJ120625 and Fund of Chongqing Normal University, China under Grant 10XLR017 and 2011XLZ07.

Authors’ Affiliations

(1)
Department of Mathematics, Yangzhou University
(2)
Department of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus

References

  1. Sándor J, Crstici B II. In Handbook of Number Theory. Kluwer Academic, Dordrecht; 2004.View Article
  2. Srivastava HM, Choi J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht; 2001.View Article
  3. Srivastava HM, Pintér Á: Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 2004, 17: 375-380. 10.1016/S0893-9659(04)90077-8MathSciNetView Article
  4. Apostol TM: On the Lerch zeta function. Pac. J. Math. 1951, 1: 161-167. 10.2140/pjm.1951.1.161MathSciNetView Article
  5. Srivastava HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129: 77-84. 10.1017/S0305004100004412View Article
  6. Luo Q-M, Srivastava HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308: 290-320. 10.1016/j.jmaa.2005.01.020MathSciNetView Article
  7. Luo Q-M: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10: 917-925.
  8. Horadam AF: Genocchi polynomials. In Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications. Kluwer Academic, Dordrecht; 1991:145-166.View Article
  9. Horadam AF: Negative order Genocchi polynomials. Fibonacci Q. 1992, 30: 21-34.MathSciNet
  10. Horadam AF: Generation of Genocchi polynomials of first order by recurrence relations. Fibonacci Q. 1992, 30: 239-243.MathSciNet
  11. Jang L-C, Kim T: On the distribution of the q -Euler polynomials and the q -Genocchi polynomials of higher order. J. Inequal. Appl. 2008, 2008: 1-9.
  12. Luo Q-M: Fourier expansions and integral representations for the Genocchi polynomials. J. Integer Seq. 2009, 12: 1-9.
  13. Luo Q-M: q -extensions for the Apostol-Genocchi polynomials. Gen. Math. 2009, 17: 113-125.
  14. Luo Q-M: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 2011, 48: 291-309.MathSciNet
  15. Luo Q-M, Srivastava HM: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217: 5702-5728. 10.1016/j.amc.2010.12.048MathSciNetView Article
  16. Dattoli G, Srivastava HM, Zhukovsky K: Orthogonality properties of the Hermite and related polynomials. J. Comput. Appl. Math. 2005, 182: 165-172. 10.1016/j.cam.2004.10.021MathSciNetView Article
  17. Appell P: Sur une classe de polynomials. Ann. Sci. Éc. Norm. Super. 1880, 9: 119-144.MathSciNet
  18. He MX, Ricci PE: Differential equation of Appell polynomials via the factorization method. J. Comput. Appl. Math. 2002, 139: 231-237. 10.1016/S0377-0427(01)00423-XMathSciNetView Article
  19. Ben Cheikh Y, Chaggara H: Connection problems via lowering operators. J. Comput. Appl. Math. 2005, 178: 45-61. 10.1016/j.cam.2004.02.024MathSciNetView Article
  20. Garg M, Jain K, Srivastava HM: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 2006, 17: 803-815. 10.1080/10652460600926907MathSciNetView Article
  21. Lin S-D, Srivastava HM, Wang P-Y: Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 2006, 17: 817-827. 10.1080/10652460600926923MathSciNetView Article
  22. Liu HM, Wang WP: Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309: 3346-3363. 10.1016/j.disc.2008.09.048MathSciNetView Article
  23. Lu D-Q: Some properties of Bernoulli polynomials and their generalizations. Appl. Math. Lett. 2011, 24: 746-751. 10.1016/j.aml.2010.12.021MathSciNetView Article
  24. Luo Q-M: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transforms Spec. Funct. 2009, 20: 377-391. 10.1080/10652460802564324MathSciNetView Article
  25. Luo Q-M, Srivastava HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51: 631-642. 10.1016/j.camwa.2005.04.018MathSciNetView Article
  26. Ozden H, Simsek Y, Srivastava HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 2010, 60: 2779-2787. 10.1016/j.camwa.2010.09.031MathSciNetView Article
  27. Yang S-L: An identity of symmetry for the Bernoulli polynomials. Discrete Math. 2008, 308: 550-554. 10.1016/j.disc.2007.03.030MathSciNetView Article
  28. Yang SL, Qiao ZK: Some symmetry identities for the Euler polynomials. J. Math. Res. Expo. 2010, 30(3):457-464.MathSciNet
  29. Lu D-Q, Srivastava HM: Some series identities involving the generalized Apostol type and related polynomials. Comput. Math. Appl. 2011, 62: 3591-3602. 10.1016/j.camwa.2011.09.010MathSciNetView Article
  30. Gould HW, Hopper AT: Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 1962, 29: 51-63. 10.1215/S0012-7094-62-02907-1MathSciNetView Article
  31. Appell P, Kampé de Fériet J: Functions hypergéométriques et hypersphériques: Polynómes d’Hermite. Gauthier-Villars, Paris; 1926.
  32. Dattoli G, Khan S, Ricci PE: On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case. Integral Transforms Spec. Funct. 2008, 19: 1-9. 10.1080/10652460701358984MathSciNetView Article
  33. Dere R, Simsek Y: Normalized polynomials and their multiplication formulas. Adv. Differ. Equ. 2013., 2013: Article ID 31. doi:10.1186/1687-1847-2013-31
  34. Dere R, Simsek Y: Genocchi polynomials associated with the umbral algebra. Appl. Math. Comput. 2011, 218: 756-761. 10.1016/j.amc.2011.01.078MathSciNetView Article
  35. Dere R, Simsek Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 2012, 22: 433-438.MathSciNet
  36. Kurt B, Simsek Y: Frobenius-Euler type polynomials related to Hermite-Bernoulli polynomials, analysis and applied math. AIP Conf. Proc. 2011, 1389: 385-388.View Article
  37. Srivastava HM: Some generalizations and basic (or q -) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5: 390-444.MathSciNet
  38. Srivastava HM, Kurt B, Simsek Y: Some families of Genocchi type polynomials and their interpolation functions. Integral Transforms Spec. Funct. 2012, 23: 919-938. see also corrigendum, Integral Transforms Spec. Funct. 23, 939-940 (2012) 10.1080/10652469.2011.643627MathSciNetView Article
  39. Srivastava HM, Ozarslan MA, Kaanuglu C: Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Russ. J. Math. Phys. 2013, 20: 110-120.MathSciNetView Article
  40. Srivastava HM, Choi J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam; 2012.

Copyright

© Lu and Luo; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.