Skip to main content

Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan–Taylor damping

Abstract

This paper studies a Balakrishnan–Taylor viscoelastic wave equation with strong time-dependent delay. Under suitable assumptions on the coefficients of the delay term, we establish a generalized stability result, which improve some earlier results in the literature.

1 Introduction

This paper studies a Balakrishnan–Taylor wave equation with memory and a strong time-dependent delay

figure a

where \(\Omega \subseteq {\mathbb{R}}^{n}\) (\(n\geq 1\)) is a bounded domain with smooth boundary Ω. The term \((a+b\|\nabla v\|^{2}+{\sigma (\nabla v,\nabla v_{t})})\) represents the nonlinear stiffness of the membrane; \(\mu _{1}\), \(\mu _{2}\) are two constants. The function \(k(t)\) is often called the kernel or relaxation function. \(\tau (t)>0\), which is dependent on time t, is the time delay. System (1.1)–(1.4) is related to the panel flutter equation with memory term and time delay control from the physical point of view.

Balakrishnan and Taylor [4] first introduced Balakrishnan–Taylor damping \(\sigma (\nabla v,\nabla v_{t})\); see also Bass and Zes [5]. If \(\mu _{2}=\sigma =0\), the system, which is called Kirchhoff-type equation, has been well studied. Generally speaking, the wave equation with Balakrishnan–Taylor damping is given by

$$\begin{aligned} v_{tt}- \bigl(a+b \Vert \nabla v \Vert ^{2}+\sigma (\nabla v,\nabla v_{t}) \bigr)\Delta v+g(v_{t})=f(v). \end{aligned}$$
(1.5)

In the absence of damping term and \(f(v)=|v|^{p}v\), the global existence and polynomial decay of energy were obtained by Zarai and Tatar, see [35]. In [36], an exponential decay and the blow up of solutions were established. If \(f(u)=0\), Park [34] obtained a general decay rate of solutions. Ha [14] studied (1.5) with a memory term, and a general decay result of energy was proved, which did not impose any restrictive growth assumption on the damping term. We can find more results concerning wave equation with Balakrishnan–Taylor damping in Clark [7, 11, 12, 15, 18, 37, 38, 41, 42], and so on.

The delay effects can be regarded as a source of instability. There are so many results on wave equation with weak time delay effects; see, for example, Datko et al. [9], Nicaise et al. [3033], Xu et al. [39], and so on. For the wave equation with a memory term and weak time delay,

$$\begin{aligned} v_{tt}-\Delta v+h\ast \Delta v+\mu _{1}g_{1} \bigl(v_{t}(t)\bigr)+\mu _{2}g_{2} \bigl(v_{t}(t- \tau )\bigr)=0, \end{aligned}$$
(1.6)

if \(g_{1}\) and \(g_{2}\) are linear, the stability was established in [8, 19, 22, 23], etc. Benaissa, Benguessoum, and Messaoudi [6] considered (1.6) to prove a general decay of energy by assuming \(g_{2}\) is linear-like. Regarding a wave equation with Balakrishnan–Taylor damping and weak time delay,

$$\begin{aligned}& v_{tt}-\bigl(a+b \Vert \nabla v \Vert ^{2}+\sigma (\nabla v,\nabla v_{t})\bigr)\Delta v+h \ast \Delta v \\& \quad {} +\mu _{1}g_{1}\bigl(v_{t}(t)\bigr)+\mu _{2}g_{2}\bigl(v_{t}(t- \tau )\bigr)=0, \end{aligned}$$
(1.7)

when \(g_{1}\) and \(g_{2}\) are linear, one can find some stability results in Lee et al. [20, 21] and Liu et al. [24], and so on. Kang et al. [17] studied the general equation (1.7) and obtained a general decay result following some properties of convex functions introduced in [13]. Gheraibia and Boumaza [13] established a general decay rate by assuming \(h'(t)\leq -\xi (t)h(t)\) for the case of \(g_{1}(s)=g_{2}(s)=|s|^{m-2}s\).

Concerning the wave equation with a strong time delay, in [29], Messaoudi et al. first introduced a wave equation with strong time delay of the form

$$\begin{aligned} v_{tt}-\Delta v-\mu _{1}\Delta v_{t}-\mu _{2}\Delta v_{t}(t-\tau )=0, \end{aligned}$$
(1.8)

studied the stability of the problem. Feng [10] considered (1.8) with viscoelastic damping. The author obtained a general decay rate of solution. With respect to viscoelastic delayed wave equation with Balakrishnan–Taylor damping, Hao and Wei [16] studied the case of the system with a weak time delay, and energy decay was established by assuming the relaxation function k such that \(k'(t)\leq -\zeta (t)k(t)\). Using the same assumption on the relaxation function, Yoon et al. [40] proved the general decay of a viscoelastic Kirchhoff Balakrishnan–Taylor equation with nonlinear delay and acoustic boundary conditions. Our goal in this paper is to study the energy decay of a wave equation with Balakrishnan–Taylor damping and strong time delay, i.e., problem (1.1)–(1.4) by considering a more assumption on relaxation function k:

$$ k'(t)\leq -\zeta (t)k^{q}(t),\quad 1\leq q< 3/2, $$

which is more general than considered in earlier papers. Hence our result improves and generalizes earlier results in the literature.

In Sect. 2, we give some preliminaries. The general decay result is established in Sect. 3.

2 Preliminaries

First we state some assumptions used in this paper.

We assume \(k:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) is a nonincreasing differentiable function satisfying

$$\begin{aligned} k(0)>0, \quad a- \int ^{\infty}_{0}k(s)\,ds=l>0, \end{aligned}$$
(2.1)

and there exists a nonincreasing differentiable function \(\zeta :\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) such that for \(t\geq 0\),

$$\begin{aligned} \zeta (t)>0,\quad k'(t)\leq -\zeta (t)k^{p}(t),\quad 1\leq p< \frac{3}{2}, \end{aligned}$$
(2.2)

and

$$ \int ^{\infty}_{0}\zeta (t)\,dt=\infty . $$

For the delay \(\tau (t)\), there exist constants \(\tau _{0}>0\) and \(\tau _{1}>0\) such that

$$\begin{aligned} \tau _{0}\leq \tau (t)\leq \tau _{1},\quad \forall t>0. \end{aligned}$$
(2.3)

In addition,

$$\begin{aligned} \tau (t)\in W^{2,\infty}(0,T) \quad \text{and}\quad \tau '(t)\leq d< 1,\quad \forall T,t>0. \end{aligned}$$
(2.4)

The existence and uniqueness of problem (1.1)–(1.4), which can be proved by using the Faedo–Galerkin method, are given in the theorem below, see, for example, [35, 41].

Theorem 2.1

Let (2.1)(2.4) hold. Let \(\mu _{2}\leq \mu _{1}\), and \((v_{0},v_{1})\in (H^{1}(\Omega )\times L^{2}(\Omega ))\), \(f_{0}\in H^{1}_{0}(\Omega \times (-\tau (0),0))\). Then system (1.1)(1.4) admits only one weak solution \((v,v_{t})\in C(0,T;H^{1}_{0}(\Omega )\times L^{2}(\Omega ))\) such that for any \(T>0\),

$$\begin{aligned} v\in L^{\infty}\bigl(0,T;H^{1}_{0}(\Omega )\bigr),\qquad v_{t}\in L^{\infty}\bigl(0,T;L^{2}( \Omega )\bigr). \end{aligned}$$

The total energy is defined by

$$ \begin{aligned} E(t)={}&\frac{1}{2} \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+\frac{b}{4} \bigl\Vert \nabla v(t) \bigr\Vert ^{4}+\frac{1}{2} \biggl(a- \int ^{t}_{0}k(s)\,ds \biggr) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \frac{1}{2}(k\circ \nabla v) (t) \\ &{} +\frac{\xi}{2} \int ^{t}_{t-\tau (t)}e^{-\lambda (t-s)} \bigl\Vert \nabla v_{t}(s) \bigr\Vert ^{2}\,ds, \end{aligned} $$
(2.5)

where ξ is a positive constant and the constant \(\lambda >0\) satisfies, see [32],

$$ \lambda < \frac{1}{\tau _{1}} \biggl\vert \log \frac{ \vert \mu _{2} \vert }{\sqrt{1-d}} \biggr\vert $$

and

$$ (k\circ v) (t)= \int ^{t}_{0}k(t-s) \bigl\Vert v(t)-v(s) \bigr\Vert ^{2}\,ds. $$

Lemma 2.1

Let \(|\mu _{2}|<\sqrt{1-d}\mu _{1}\). For any \(t\geq 0\), we have

$$ \begin{aligned}E'(t)\leq{}& \frac{1}{2} \bigl(k'\circ \nabla v\bigr) (t)-\frac{1}{2}k(t) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \biggl(\frac{\xi}{2}-\mu _{1}+ \frac{ \vert \mu _{2} \vert }{2\sqrt{1-d}} \biggr) \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} \\ &{} + \biggl[\frac{ \vert \mu _{2} \vert }{2}\sqrt{1-d}-\frac{\xi}{2}(1-d)e^{- \lambda \tau _{1}} \biggr] \bigl\Vert \nabla v_{t}\bigl(t-\tau (t)\bigr) \bigr\Vert ^{2} \\ &{}-\sigma \biggl(\frac{1}{2}\frac{d}{dt} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr)^{2} \\ & {}-\frac{\lambda \xi}{2} \int ^{t}_{t-\tau (t)}e^{-\lambda (t-s)} \bigl\Vert \nabla v_{t}(s) \bigr\Vert ^{2}\,ds \\ \leq{}& 0. \end{aligned} $$
(2.6)

Proof

First,

$$ \begin{aligned} &\frac{1}{2}\frac{d}{dt} \biggl[(k\circ \nabla v) (t)- \biggl( \int ^{t}_{0}k(s)\,ds \biggr) \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr] \\ &\quad =\frac{1}{2}\bigl(k'\circ \nabla v\bigr) (t)- \frac{1}{2}k(t) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}- \int _{\Omega}\nabla v_{t}(t) \int ^{t}_{0}k(t-s)\nabla v(s)\,ds\,dx. \end{aligned} $$
(2.7)

Differentiating (2.5), we have

$$ \begin{aligned} E'(t)={}& \int _{\Omega }v_{t}(t)v_{tt}(t)\,dx- \frac{1}{2}k(t) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \biggl(a- \int ^{t}_{0}k(s)\,ds \biggr) \int _{\Omega} \nabla v(t)\cdot \nabla v_{t}(t)\,dx \\ &{} +b \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \int _{\Omega}\nabla v(t)\nabla v_{t}(t)\,dx+ \frac{1}{2}\frac{d}{dt}(k\circ \nabla v) (t) \\ &{} +\frac{\xi}{2} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2}-\frac{\xi}{2}e^{- \lambda \tau (t)}\bigl(1-\tau '(t) \bigr) \bigl\Vert \nabla v_{t}\bigl(t-\tau (t)\bigr) \bigr\Vert ^{2} \\ & {}-\frac{\lambda \xi}{2} \int ^{t}_{t-\tau (t)}e^{-\lambda (t-s)} \bigl\Vert \nabla v_{t}(s) \bigr\Vert ^{2}\,ds. \end{aligned} $$

Then it is obtained by using (1.1) that

$$ \begin{aligned} E'(t)={}&\frac{1}{2} \bigl(k'\circ \nabla v\bigr) (t)-\frac{1}{2}k(t) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}-\sigma \biggl(\frac{1}{2} \frac{d}{dt} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr)^{2} -\mu _{1} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} \\ & {}+\frac{\xi}{2} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2}-\mu _{2} \int _{\Omega} \nabla v_{t}(t)\cdot \nabla v_{t}\bigl(t-\tau (t)\bigr)\,dx \\ & {}-\frac{\lambda \xi}{2} \int ^{t}_{t-\tau (t)}e^{-\lambda (t-s)} \bigl\Vert \nabla v_{t}(s) \bigr\Vert ^{2}\,ds-\frac{\xi}{2}e^{-\lambda \tau (t)} \bigl(1-\tau '(t)\bigr) \bigl\Vert \nabla v_{t}\bigl(t- \tau (t)\bigr) \bigr\Vert ^{2}, \end{aligned} $$

which, together with (2.7) and (2.3)–(2.4), implies

$$ \begin{aligned} E'(t)\leq{}& \frac{1}{2}\bigl(k'\circ \nabla v\bigr) (t)- \frac{1}{2}k(t) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}-\sigma \biggl(\frac{1}{2}\frac{d}{dt} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr)^{2} -\mu _{1} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} \\ & {}+\frac{\xi}{2} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} -\mu _{2} \int _{\Omega} \nabla v_{t}(t)\cdot \nabla v_{t}\bigl(t-\tau (t)\bigr)\,dx \\ &{}-\frac{\xi}{2}(1-d)e^{- \lambda \tau _{1}} \bigl\Vert \nabla v_{t}\bigl(t-\tau (t)\bigr) \bigr\Vert ^{2} \\ & {}-\frac{\lambda \xi}{2} \int ^{t}_{t-\tau (t)}e^{-\lambda (t-s)} \bigl\Vert \nabla v_{t}(s) \bigr\Vert ^{2}\,ds. \end{aligned} $$
(2.8)

In view of Young’s inequality,

$$\begin{aligned}& -\mu _{2} \int _{\Omega}\nabla v_{t}(t)\cdot \nabla v_{t} \bigl(t-\tau (t)\bigr)\,dx \\& \quad \leq \frac{ \vert \mu _{2} \vert }{2\sqrt{1-d}} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2}+ \frac{ \vert \mu _{2} \vert }{2}\sqrt{1-d} \bigl\Vert \nabla v_{t}\bigl(t-\tau (t)\bigr) \bigr\Vert ^{2}. \end{aligned}$$
(2.9)

Then (2.6) follows from (2.8)–(2.9).

Clearly, \(e^{\lambda \tau _{1}}\rightarrow 1\) as \(\lambda \rightarrow 0\). Recalling that the set of real numbers is continuous, we can choose \(\lambda >0\), small such that

$$\begin{aligned} \frac{e^{\lambda \tau _{1}} \vert \mu _{2} \vert }{\sqrt{1-d}}< \xi < \mu _{1}, \end{aligned}$$
(2.10)

where ξ is a positive constant. Then it follows that

$$\begin{aligned} \frac{ \vert \mu _{2} \vert }{2\sqrt{1-d}}-\mu _{1}+\frac{\xi}{2}< 0 \quad \text{and}\quad \frac{ \vert \mu _{2} \vert }{2}\sqrt{1-d}-\frac{\xi}{2e^{\lambda \tau _{1}}}(1-d)< 0. \end{aligned}$$
(2.11)

Combining (2.10) and (2.6), we get that the energy in (2.5) is nonincreasing. □

Lemma 2.2

Let (2.1) and (2.2) hold. We have

$$\begin{aligned} (k\circ \nabla v) (t)\leq c \biggl( \int ^{t}_{0}k^{\frac{1}{2}}(s)\,ds \biggr)^{\frac{2q-2}{2q-1}}\bigl(k^{q}\circ \nabla u\bigr)^{\frac{1}{2q-1}}(t). \end{aligned}$$
(2.12)

Proof

See, Messaoudi [25]. □

Lemma 2.3

Let (2.1) and (2.2) hold. Then for any \(t\geq 0\),

$$\begin{aligned} \zeta (t) (k\circ \nabla v) (t)\leq c\bigl(-E'(t) \bigr)^{\frac{1}{2q-1}}. \end{aligned}$$
(2.13)

Proof

First, we claim that for any \(0<\alpha <2-q\),

$$\begin{aligned} \int ^{\infty}_{0}\zeta (t)k^{1-\alpha}(t)\,dt< + \infty . \end{aligned}$$
(2.14)

Indeed, in view of (2.2) and \(0<\alpha <2-q\), we get

$$ \begin{aligned} \int ^{\infty}_{0}\zeta (t)k^{1-\alpha}(t)\,dt&= \int ^{ \infty}_{0}\zeta (t)k^{q}(t)k^{1-q-\alpha}(t) \,dt \\ &\leq - \int ^{\infty}_{0}k'(t)k^{1-q-\alpha}(t) \,dt \\ &=-\frac{k^{2-q-\alpha}}{2-q-\alpha}\bigg|^{\infty}_{0}< +\infty . \end{aligned} $$

Multiplying (2.12) by \(\zeta (t)\), and using (2.6) and (2.14), we obtain

$$ \begin{aligned} \zeta (t) (k\circ \nabla v) (t)&\leq c\zeta ^{ \frac{2q-2}{2q-1}}(t) \biggl( \int ^{t}_{0}k^{\frac{1}{2}}(s)\,ds \biggr)^{ \frac{2q-2}{2q-1}}\bigl(\zeta k^{p}\circ \nabla v \bigr)^{\frac{1}{2q-1}}(t) \\ &\leq c \biggl( \int ^{t}_{0}\zeta (s)k^{\frac{1}{2}}(s)\,ds \biggr)^{ \frac{2q-2}{2q-1}}\bigl(-k'\circ \nabla v\bigr)^{\frac{1}{2q-1}}(t) \\ &\leq c\bigl(-E'(t)\bigr)^{\frac{1}{2q-1}}. \end{aligned} $$

 □

Now we give the stability result.

Theorem 2.2

Let (2.1)(2.4) hold. Suppose \(|\mu _{2}|<\sqrt{1-d}\mu _{1}\). Let \((v_{0},v_{1})\in (H^{1}(\Omega )\times L^{2}(\Omega ))\), \(f_{0}\in H^{1}(\Omega \times (-\tau (0),0))\). Then for any \(t_{1}>0\), \(E(t)\) satisfies for all \(t\geq t_{1}\),

$$ E(t)\leq \textstyle\begin{cases} c\exp (-\eta \int ^{t}_{t_{1}}\zeta (s)\,ds ), & \textit{if } q=1, \\ c (1+ \int ^{t}_{t_{1}}\zeta ^{2q-1}(s)\,ds )^{- \frac{1}{2q-2}}, & \textit{if } 1< q< \frac{3}{2}, \end{cases} $$
(2.15)

where η is a positive constant. In addition, if, for \(1< q<\frac{3}{2}\),

$$\begin{aligned} \int ^{\infty}_{t_{1}} \biggl(1+ \int ^{t}_{t_{1}}\zeta ^{2q-1}(s)\,ds \biggr)^{-\frac{1}{2q-2}}\,dt< +\infty , \end{aligned}$$
(2.16)

then

$$\begin{aligned} E(t)\leq c \biggl(1+ \int ^{t}_{t_{1}}\zeta ^{q}(s)\,ds \biggr)^{- \frac{1}{q-1}},\quad 1< q< \frac{3}{2}. \end{aligned}$$
(2.17)

The examples are given to verify some decay rates of energy, see [2628].

Example 1

Taking \(\zeta (t)=a\), it is obtained by (2.15) that

$$ E(t)\leq \beta e^{-\gamma at}. $$

Example 2

Taking \(\zeta (t)=\frac{a}{1+t}\), it is inferred by (2.15) that

$$ E(t)\leq \frac{\beta}{(1+t)^{\gamma a}}. $$

Example 3

Taking \(k(t)=ae^{-b(1+t)^{\alpha}}\) for \(a,b>0\) and \(0<\alpha \leq 1\), we can pick \(\zeta (t)=b\alpha (1+t)^{\alpha -1}\). It is concluded from (2.15) that

$$ E(t)\leq \beta \exp \bigl(-b\gamma (1+t)^{\alpha} \bigr). $$

Example 4

Consider \(k(t)=\frac{a}{(1+t)^{b}}\) (\(b>2\)). We take \(a>0\) satisfying (2.1). If here we denote \(\zeta (t)=\frac{b}{1+t}\), then we have

$$\begin{aligned} k'(t)=-\frac{ab}{(1+t)^{b+1}}=-\zeta (t)k(t). \end{aligned}$$
(2.18)

Then it is obtained from (2.15)1 that

$$ E(t)\leq c\exp \biggl(-\eta \int ^{t}_{t_{1}}\zeta (s)\,ds \biggr)= \frac{c}{(1+t)^{b\eta}}. $$

On the other hand, by denoting \(\zeta (t)=\rho =\frac{b}{a^{\frac{1}{b}}}\), we rewrite (2.18) as

$$\begin{aligned} k'(t)=-\rho \biggl(\frac{a}{(1+t)^{b}} \biggr)^{\frac{b+1}{b}}=- \zeta (t)k^{p}(t), \end{aligned}$$
(2.19)

with \(p=\frac{b+1}{b}<\frac{3}{2}\). Then we get for any \(t_{1}>0\),

$$ \int ^{\infty}_{t_{1}} \biggl(1+ \int ^{t}_{t_{1}}\zeta ^{2p-1}(s)\,ds \biggr)^{-\frac{1}{2p-2}}\,dt= \int ^{\infty}_{t_{1}}\bigl[1+c(t-t_{1}) \bigr]^{- \frac{1}{2p-2}}\,dt< +\infty . $$

Then from (2.17), we get

$$\begin{aligned} E(t)\leq c \biggl(1+ \int ^{t}_{t_{1}}\zeta ^{p}(s)\,ds \biggr)^{- \frac{1}{p-1}}=\frac{c}{(1+t)^{b}}. \end{aligned}$$

3 Uniform decay

We first define two functionals,

$$ \phi (t)= \int _{\Omega }v(t)v_{t}(t)\,dx+\frac{\sigma}{4} \bigl\Vert \nabla v(t) \bigr\Vert ^{4} $$

and

$$ \psi (t)=- \int _{\Omega }v_{t}(t)\cdot \int ^{t}_{0}k(t-s) \bigl(v(t)-v(s)\bigr)\,ds\,dx. $$

Lemma 3.1

For any \(\delta _{1}>0\), we have

$$ \begin{aligned} \phi '(t)\leq{}& \bigl\Vert v_{t}(t) \bigr\Vert ^{2}- \bigl[(a-l)-3\delta _{1} \bigr] \bigl\Vert \nabla v(t) \bigr\Vert ^{2} -b \bigl\Vert \nabla v(t) \bigr\Vert ^{4} \\ & {}+\frac{\mu ^{2}_{1}}{4\delta _{1}} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} + \frac{\mu _{2}^{2}}{4\delta _{1}} \bigl\Vert \nabla v_{t}\bigl(t- \tau (t)\bigr) \bigr\Vert ^{2}+ \frac{a-l}{4\delta _{1}}(k\circ \nabla v) (t). \end{aligned} $$
(3.1)

Proof

By (1.1),

$$ \begin{aligned} \phi '(t)={}& \int _{\Omega}v_{tt}(t)v(t)\,dx+ \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+ \sigma \bigl\Vert \nabla v(t) \bigr\Vert ^{2}\bigl(\nabla v(t),\nabla v_{t}(t)\bigr) \\ ={}& \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+\sigma \bigl\Vert \nabla v(t) \bigr\Vert ^{2}\bigl(\nabla v(t),\nabla v_{t}(t)\bigr) \\ & {}+ \int _{\Omega} v(t)\cdot \biggl[\bigl(a+b \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \sigma \bigl(\nabla v(t),\nabla v_{t}(t) \bigr)\bigr)\Delta v(t) \\ & {}- \int ^{t}_{0}k(t-s)\Delta v(s)\,ds+\mu _{1} \Delta v_{t}(t)+\mu _{2}\Delta v_{t}\bigl(t-\tau (t)\bigr) \biggr]\,dx \\ ={}& \bigl\Vert v_{t}(t) \bigr\Vert ^{2}-\bigl(a+b \bigl\Vert \nabla v(t) \bigr\Vert ^{2}\bigr) \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \\ & {}+ \int _{\Omega}\nabla v(t)\cdot \int ^{t}_{0}k(t-s) \bigl(\nabla v(s)- \nabla v(t) \bigr)\,ds\,dx \\ & {}+ \int ^{t}_{0}k(s)\,ds\cdot \bigl\Vert \nabla v(t) \bigr\Vert ^{2}-\mu _{1} \int _{ \Omega }\nabla v(t)\cdot \nabla v_{t}(t)\,dx \\ &{}-\mu _{2} \int _{\Omega} \nabla v(t)\cdot \nabla v_{t}\bigl(t-\tau (t)\bigr)\,dx. \end{aligned} $$
(3.2)

By the Cauchy–Schwarz inequality, for any \(\delta _{1}>0\), we obtain

$$\begin{aligned} \begin{aligned} & \int _{\Omega}\nabla v(t)\cdot \int ^{t}_{0}k(t-s) \bigl(\nabla v(s)- \nabla v(t) \bigr)\,ds\,dx \\ & \quad \leq \delta _{1} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+\frac{1}{4\delta _{1}} \int _{\Omega} \biggl( \int ^{t}_{0}k(t-s) \bigl(\nabla v(s)-\nabla v(t) \bigr)\,ds \biggr)^{2}\,dx \\ &\quad \leq \delta _{1} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+\frac{1}{4\delta _{1}} \int ^{t}_{0}k(s)\,ds(k\circ \nabla v) (t) \\ & \quad \leq \delta _{1} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+\frac{a-l}{4\delta _{1}}(k \circ \nabla v) (t), \end{aligned} \end{aligned}$$
(3.3)
$$\begin{aligned} &-\mu _{1} \int _{\Omega }\nabla v(t)\cdot \nabla v_{t}(t)\,dx\leq \delta _{1} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \frac{\mu _{1}^{2}}{4\delta _{1}} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2}, \end{aligned}$$
(3.4)
$$\begin{aligned} &-\mu _{2} \int _{\Omega}\nabla v(t)\cdot \nabla v_{t}\bigl(t-\tau (t)\bigr)\,dx \leq \delta _{1} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+\frac{\mu _{2}^{2}}{4\delta _{1}} \bigl\Vert \nabla v_{t}\bigl(t-\tau (t)\bigr) \bigr\Vert ^{2}. \end{aligned}$$
(3.5)

Replacing (3.3)–(3.5) in (3.2), (3.1) follows. □

Lemma 3.2

For any \(\delta _{2}>0\), we have

$$ \begin{aligned} \psi '(t)\leq{}& \sigma ^{2}E(0) \biggl(\frac{1}{2} \frac{d}{dt} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr)^{2}- \biggl( \int ^{t}_{0}k(s)\,ds- \delta _{2} \biggr) \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+\delta _{2} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} \\ & {}+c_{1}(k\circ \nabla v) (t)-c_{2}\bigl(k' \circ \nabla v\bigr) (t)+\delta _{2} \bigl\Vert \nabla v_{t} \bigl(t-\tau (t)\bigr) \bigr\Vert ^{2}+\delta _{2} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}, \end{aligned} $$
(3.6)

where \(c_{1}\) and \(c_{2}\) are positive constants depending on \(\delta _{2}\).

Proof

It is obtained by (1.1) that

$$ \begin{aligned}\psi '(t)={}&- \int _{\Omega }v_{tt}(t)\cdot \int ^{t}_{0}k(t-s) \bigl(v(t)-v(s)\bigr)\,ds\,dx \\ & {}- \int _{\Omega }v_{t}(t) \biggl[v_{t}(t) \int ^{t}_{0}k(t-s)\,ds+ \int ^{t}_{0}k'(t-s) \bigl(v(t)-v(s) \bigr)\,ds \biggr]\,dx \\ ={}&- \int _{\Omega} \biggl[\bigl(a+b \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+\sigma \bigl(\nabla v(t), \nabla v_{t}(t)\bigr) \bigr)\Delta v(t)- \int ^{t}_{0}k(t-s)\Delta v(s)\,ds \\ & {}+\mu _{1}\Delta v_{t}(t)+\mu _{2}\Delta v_{t}\bigl(t-\tau (t)\bigr) \biggr]\cdot \int ^{t}_{0}k(t-s) \bigl(u(t)-u(s)\bigr)\,ds\,dx \\ & {}- \int _{\Omega }v_{t}(t) \int ^{t}_{0}k'(t-s) \bigl(v(t)-v(s) \bigr)\,ds\,dx- \int ^{t}_{0}k(s)\,ds \bigl\Vert v_{t}(t) \bigr\Vert ^{2}. \end{aligned} $$

Then

$$ \begin{aligned}\psi '(t) ={}& \biggl(a- \int ^{t}_{0}k(s)\,ds+b \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr) \int _{\Omega}\nabla v(t)\cdot \int ^{t}_{0}k(t-s) \bigl(\nabla v(t)- \nabla v(s) \bigr)\,ds\,dx \\ & {}+ \int _{\Omega} \biggl( \int ^{t}_{0}k(t-s) \bigl(\nabla v(s)-\nabla v(t) \bigr)\,ds \biggr)^{2}\,dx- \int ^{t}_{0}k(s)\,ds \bigl\Vert v_{t}(t) \bigr\Vert ^{2} \\ & {}- \int _{\Omega }v_{t}(t) \int ^{t}_{0}k'(t-s) \bigl(v(t)-v(s) \bigr)\,ds\,dx \\ & {}+\mu _{1} \int _{\Omega}\nabla v_{t}(t)\cdot \int ^{t}_{0}k(t-s) \bigl( \nabla v(t)-\nabla v(s) \bigr)\,ds\,dx \\ & {}+\sigma \bigl(\nabla v(t),\nabla v_{t}(t)\bigr) \int _{\Omega}\nabla v(t) \int ^{t}_{0}k(t-s) \bigl(\nabla v(t)-\nabla v(s) \bigr)\,ds\,dx \\ & {}+\mu _{2} \int _{\Omega}\nabla v_{t}\bigl(t-\tau (t)\bigr)\cdot \int ^{t}_{0}k(t-s) \bigl( \nabla v(t)-\nabla v(s) \bigr)\,ds\,dx. \end{aligned} $$
(3.7)

Noting that \(E'(t)\leq 0\), then

$$ \biggl(a- \int ^{t}_{0}k(s)\,ds \biggr) \bigl\Vert \nabla v(t) \bigr\Vert ^{2}\leq 2E(t) \leq 2E(0), $$

and using (2.1), we have

$$\begin{aligned} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}\leq 2l^{-1}E(0). \end{aligned}$$
(3.8)

We combine Hölder’s and Cauchy–Schwarz inequalities and (3.8) to obtain, for any \(\delta _{2}>0\),

$$\begin{aligned} \begin{aligned} & \biggl(a- \int ^{t}_{0}k(s)\,ds+b \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr) \int _{ \Omega}\nabla v(t)\cdot \int ^{t}_{0}k(t-s) \bigl(\nabla v(t)-\nabla v(s) \bigr)\,ds\,dx \\ & \quad \leq \biggl(a+\frac{2b}{l}E(0) \biggr) \biggl\vert \int _{\Omega} \nabla v(t)\cdot \int ^{t}_{0}k(t-s) \bigl(\nabla v(t)-\nabla v(s) \bigr)\,ds\,dx \biggr\vert \\ &\quad \leq \delta _{2} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+(a-l) (4\delta _{2})^{-1} \bigl(a+2bl^{-1}E(0) \bigr)^{2}(k\circ \nabla v) (t), \end{aligned} \end{aligned}$$
(3.9)
$$\begin{aligned} \begin{aligned} &\sigma \bigl(\nabla v(t),\nabla v_{t}(t)\bigr) \int _{\Omega}\nabla v(t) \int ^{t}_{0}k(t-s) \bigl( \nabla v(t)-\nabla v(s) \bigr)\,ds\,dx \\ & \quad \leq \sigma ^{2}\bigl(\nabla v(t),\nabla v_{t}(t) \bigr)^{2}\frac{l}{2} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \\ &\qquad {}+\frac{1}{2l} \int _{\Omega} \biggl( \int ^{t}_{0}k(t-s) \bigl( \nabla v(t)-\nabla v(s) \bigr)\,ds \biggr)^{2}\,dx \\ &\quad \leq \sigma ^{2}E(0) \biggl(\frac{1}{2}\frac{d}{dt} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr)^{2}+(a-l) (2l)^{-1}(k\circ \nabla v) (t), \end{aligned} \end{aligned}$$
(3.10)
$$\begin{aligned} \begin{aligned} &\mu _{1} \int _{\Omega}\nabla v_{t}(t) \int ^{t}_{0}k(t-s) \bigl(\nabla v(t)- \nabla v(s) \bigr)\,ds\,dx \\ & \quad \leq \delta _{2} \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2}+\mu _{1}^{2}(a-l) (4 \delta _{2})^{-1}(k\circ \nabla v) (t), \end{aligned} \end{aligned}$$
(3.11)
$$\begin{aligned} \begin{aligned} &\mu _{2} \int _{\Omega}\nabla v_{t}\bigl(t-\tau (t)\bigr)\cdot \int ^{t}_{0}k(t-s) \bigl( \nabla v(t)-\nabla v(s) \bigr)\,ds\,dx \\ &\quad \leq \delta _{2} \bigl\Vert \nabla v_{t}\bigl(t-\tau (t) \bigr) \bigr\Vert ^{2}+\mu _{2}^{2}(a-l) (4 \delta _{2})^{-1}(k\circ \nabla v) (t), \end{aligned} \\ \begin{aligned} & {}- \int _{\Omega }v_{t}(t) \int ^{t}_{0}k'(t-s) \bigl(v(t)-v(s) \bigr)\,ds\,dx \\ &\quad \leq \delta _{2} \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+\frac{1}{4\delta _{2}} \biggl( \int ^{t}_{0}\bigl(-k'(t-s)\bigr) \bigl\Vert v(t)-v(s) \bigr\Vert \,ds \biggr)^{2}\,dx \\ &\quad \leq \delta _{2} \bigl\Vert v_{t}(t) \bigr\Vert ^{2}-k(0) (4\delta _{2}\lambda _{1})^{-1} \bigl(k' \circ \nabla v\bigr) (t), \end{aligned} \end{aligned}$$
(3.12)

and

$$\begin{aligned} \int _{\Omega} \biggl( \int ^{t}_{0}k(t-s) \bigl(\nabla v(s)-\nabla v(t) \bigr)\,ds \biggr)^{2}\,dx\leq (a-l) (k\circ \nabla v) (t). \end{aligned}$$

It is inferred by combining the above inequalities with (3.7) that (3.6) holds with

$$ c_{1}=\frac{a-l}{4\delta _{2}} \bigl(a+2bl^{-1}E(0) \bigr)^{2}+(a-l) (2l)^{-1}+ \mu ^{2}_{1}(a-l) (4\delta _{2})^{-1}+\mu ^{2}_{2}(a-l) (4 \delta _{2})^{-1}+(a-l) $$

and

$$ c_{2}=k(0) (4\delta _{2}\lambda _{1})^{-1}. $$

 □

We define \(\tilde{E}(t)\) by

$$ \tilde{E}(t):=E(t)+\varepsilon _{1}\phi (t)+\varepsilon _{2}\psi (t), $$

for \(\varepsilon _{1}>0\) and \(\varepsilon _{2}>0\).

Lemma 3.3

For \(\varepsilon _{1}>0\) and \(\varepsilon _{2}>0\) small, it holds that

$$\begin{aligned} \frac{1}{2}E(t)\leq \tilde{E}(t)\leq \frac{3}{2}E(t). \end{aligned}$$
(3.13)

Proof

It is concluded by Young’s and Poincaré’s inequalities that

$$ \begin{aligned} \bigl\vert \tilde{E}(t)-E(t) \bigr\vert ={}& \varepsilon _{1}\phi (t)+ \varepsilon _{2}\psi (t) \\ \leq{}& \varepsilon _{1} \int _{\Omega} \bigl\vert v(t) \bigr\vert \bigl\vert v_{t}(t) \bigr\vert \,dx+ \frac{\varepsilon _{1}\sigma}{4} \bigl\Vert \nabla v(t) \bigr\Vert ^{4} \\ & {}+\varepsilon _{2} \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert \int ^{t}_{0}k(t-s) \bigl\vert v(t)-v(s) \bigr\vert \,ds\,dx \\ \leq{}& \frac{\varepsilon _{1}}{2} \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+ \frac{\varepsilon _{1}}{2\lambda _{1}} \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \frac{\varepsilon _{1}\sigma}{4} \bigl\Vert \nabla v(t) \bigr\Vert ^{4} \\ & {}+\frac{\varepsilon _{2}}{2} \bigl\Vert v_{t}(t) \bigr\Vert ^{2}+ \frac{\varepsilon _{2}}{2\lambda _{1}}(a-l) (k\circ \nabla v) (t). \end{aligned} $$

Then there is a constant \(\varepsilon >0\) such that

$$ \bigl\vert \tilde{E}(t)-E(t) \bigr\vert \leq \varepsilon E(t), $$

which implies (3.13) by taking \(\varepsilon _{1}>0\) and \(\varepsilon _{2}>0\) sufficiently small. □

Proof of Theorem 2.2

First, for any \(t_{1}>0\), it is obtained that for any \(t\geq t_{1}\),

$$ \int ^{t}_{0}k(s)\,ds\geq \int ^{t_{1}}_{0}k(s)\,ds:=k_{0}. $$

We infer from (2.6), (3.1), and (3.6) that for any \(t\geq t_{1}\),

$$ \begin{aligned} \tilde{E}'(t)\leq{}& - \biggl( \int ^{t}_{0}k(s)\,ds-\delta _{2} \biggr) \varepsilon _{2} \bigl\Vert v_{t}(t) \bigr\Vert ^{2}- \bigl[\bigl[(a-l)-3\delta _{1}\bigr] \varepsilon _{1}-\delta _{2}\varepsilon _{2} \bigr] \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \\ & {}+ \biggl(\frac{\xi}{2}-\mu _{1}+\frac{ \vert \mu _{2} \vert }{2\sqrt{1-d}}+ \frac{\mu _{1}^{2}}{4\delta _{1}}\varepsilon _{1}+\delta _{2} \varepsilon _{2} \biggr) \bigl\Vert \nabla v_{t}(t) \bigr\Vert ^{2} \\ & {}+ \biggl[\frac{ \vert \mu _{2} \vert }{2}\sqrt{1-d}-\frac{\xi}{2}(1-d)e^{- \lambda \tau _{1}}+ \frac{\mu ^{2}_{2}}{4\delta _{1}}\varepsilon _{1}+ \delta _{2}\varepsilon _{2} \biggr] \bigl\Vert \nabla v_{t}\bigl(t-\tau (t)\bigr) \bigr\Vert ^{2} \\ & {}+ \biggl(\frac{1}{2}-c_{2}\varepsilon _{2} \biggr) \bigl(k'\circ \nabla v\bigr) (t)+ \biggl(\frac{a-l}{4\delta _{1}} \varepsilon _{1}+c_{1} \varepsilon _{2} \biggr) (k \circ \nabla v) (t) \\ & {}-\frac{\lambda \xi}{2} \int ^{t}_{t-\tau (t)}e^{-\lambda (t-s)} \bigl\Vert \nabla v_{t}(s) \bigr\Vert ^{2}\,ds-\bigl(\sigma -\sigma ^{2}E(0)\varepsilon _{2}\bigr) \biggl(\frac{1}{2} \frac{d}{dt} \bigl\Vert \nabla v(t) \bigr\Vert ^{2} \biggr)^{2}. \end{aligned} $$
(3.14)

First, we take \(\delta _{1}>0\) satisfying

$$ (a-l)-3\delta _{1}>\frac{a-l}{2}. $$

For any fixed \(\delta _{1}>0\), we choose \(\delta _{2}>0\) satisfying for \(t\geq t_{1}\),

$$ \int ^{t}_{0}k(s)\,ds-\delta _{2}\geq \frac{1}{2}k_{0}. $$

At this point, for any fixed \(\delta _{1},\delta _{2}>0\), we take \(\varepsilon _{1}>0\) small enough such that (3.13) holds,

$$ \varepsilon _{1}< \min \biggl\{ \frac{2\delta _{1}}{\mu _{1}}- \frac{\xi \delta _{1}}{\mu _{1}^{2}}- \frac{ \vert \mu _{2} \vert \delta _{1}}{\mu ^{2}_{1}\sqrt{1-d}}, \frac{\xi \delta _{1}}{\mu _{2}^{2}}(1-d)e^{-\lambda \tau _{1}}- \frac{\delta _{1}}{ \vert \mu _{2} \vert } \sqrt{1-d} \biggr\} , $$

which gives us

$$ \frac{\xi}{2}-\mu _{1}+\frac{ \vert \mu _{2} \vert }{2\sqrt{1-d}}+ \frac{\mu _{1}^{2}}{4\delta _{1}} \varepsilon _{1}< \frac{\xi}{4}- \frac{\mu _{1}}{2}+ \frac{ \vert \mu _{2} \vert }{4\sqrt{1-d}} $$

and

$$ \frac{ \vert \mu _{2} \vert }{2}\sqrt{1-d}-\frac{\xi}{2}(1-d)e^{-\lambda \tau _{1}}+ \frac{\mu _{2}^{2}}{4\delta _{1}}\varepsilon _{1} < \frac{ \vert \mu _{2} \vert }{4}\sqrt{1-d}- \frac{\xi}{4}(1-d)e^{-\lambda \tau _{1}}. $$

At last for any fixed \(\delta _{1},\delta _{2}>0\) and \(\varepsilon _{1}>0\), we pick \(\varepsilon _{1}>0\) so small that (3.13) holds, and further

$$ \begin{aligned}\varepsilon _{2}< {}&\min \biggl\{ \frac{1}{4c_{2}},\frac{1}{2\sigma E(0)}, \frac{a-l}{2\delta _{2}}\varepsilon _{1}, \frac{\mu _{1}}{4\delta _{2}}- \frac{\xi}{8\delta _{2}}- \frac{ \vert \mu _{2} \vert }{8\delta _{2}\sqrt{1-d}}, \\ &{}\frac{\xi}{8\delta _{2}}(1-d)e^{- \lambda \tau _{1}}- \frac{ \vert \mu _{2} \vert }{8\delta _{2}}\sqrt{1-d} \biggr\} , \end{aligned}$$

which gives us

$$\begin{aligned}& \frac{1}{2}-c_{2}\varepsilon _{2}>\frac{1}{4},\qquad \sigma -\sigma ^{2}E(0) \varepsilon _{2}>\frac{\sigma}{2},\qquad \frac{a-l}{2}\varepsilon _{2}- \delta _{2}\varepsilon _{2}>0,\\& \frac{\xi}{4}-\frac{\mu _{1}}{2}+\frac{ \vert \mu _{2} \vert }{4\sqrt{1-d}}+ \delta _{2} \varepsilon _{2}< \frac{\xi}{8}-\frac{\mu _{1}}{4}+ \frac{ \vert \mu _{2} \vert }{8\sqrt{1-d}}, \end{aligned}$$

and

$$ \frac{ \vert \mu _{2} \vert }{4}\sqrt{1-d}-\frac{\xi}{4}(1-d)e^{-\lambda \tau _{1}}+ \delta _{2}\varepsilon _{2} < \frac{ \vert \mu _{2} \vert }{8}\sqrt{1-d}- \frac{\xi}{8}(1-d)e^{-\lambda \tau _{1}}. $$

Then we can conclude that for any \(t\geq t_{1}\),

$$\begin{aligned} \tilde{E}'(t)\leq -\gamma _{1}E(t)+\gamma _{2}(k\circ \nabla v) (t), \end{aligned}$$
(3.15)

for \(\gamma _{1}>0\) and \(\gamma _{2}>0\).

Case 1. \(q=1\)

We multiply (3.15) by \(\zeta (t)\) and use (2.2) to obtain

$$ \begin{aligned} \zeta (t)\tilde{E}'(t)&\leq -\gamma _{1}\zeta (t)E(t)+ \gamma _{2}\zeta (t) (k\circ \nabla v) (t) \\ &\leq -\gamma _{1}\zeta (t)E(t)-\gamma _{2} \bigl(k'\circ \nabla v\bigr) (t) \\ &\leq -\gamma _{1}\zeta (t)E(t)-\gamma _{3}E'(t),\quad \forall t \geq t_{1}, \end{aligned} $$
(3.16)

where \(\gamma _{3}>0\).

Denoting

$$ H(t)=\zeta (t)\tilde{E}(t)+\gamma _{3} E(t), $$

and recalling (3.13), we know that \(H(t)\sim E(t)\), i.e.,

$$\begin{aligned} \beta _{1}E(t)\leq H(t)\leq \beta _{2}E(t), \end{aligned}$$
(3.17)

where \(\beta _{1}\) and \(\beta _{2}\) are two constants. Noting that \(\zeta (t)\) is nonincreasing, we can derive from (3.16)–(3.17) that

$$ H'(t)\leq -\frac{\gamma _{1}}{\beta _{2}}\zeta (t)H(t), \quad \forall t \geq t_{1}. $$

It is inferred that for any \(t\geq t_{1}\),

$$\begin{aligned} H(t)\leq H(t_{0})\exp \biggl(-\frac{\gamma _{1}}{\beta _{2}} \int ^{t}_{t_{1}} \zeta (s)\,ds \biggr), \end{aligned}$$
(3.18)

which gives us (2.15)1.

Case 2. It is concluded by multiplying (3.15) by \(\zeta (t)\) that

$$ \begin{aligned} \zeta (t)\tilde{E}'(t)&\leq -\gamma _{1}\zeta (t)E(t)+ \gamma _{2}\zeta (t) (k\circ \nabla v) (t) \\ &\leq -\gamma _{1}\zeta (t)E(t)+c\bigl(-E'(t) \bigr)^{\frac{1}{2q-1}}. \end{aligned} $$
(3.19)

Multiplying (3.19) by \(\zeta ^{2q-2}(t)E^{2q-2}(t)\) implies

$$\begin{aligned} \zeta ^{2q-1}(t)E^{2q-2}(t)\tilde{E}'(t) \leq -\gamma _{1}(\zeta E)^{2q-1}(t)+c( \zeta E)^{2q-2}(t) \bigl(-E'(t)\bigr)^{\frac{1}{2q-1}}. \end{aligned}$$
(3.20)

Using Young’s inequality in (3.20) gives for any \(\varepsilon _{0}>0\),

$$\begin{aligned} \zeta ^{2q-1}(t)E^{2q-2}(t)\tilde{E}'(t) \leq -(\gamma _{1}-c \varepsilon _{0}) (\zeta E)^{2q-1}(t)-\frac{c}{\varepsilon _{0}}E'(t). \end{aligned}$$
(3.21)

Since \(\zeta (t)\) and \(E(t)\) are nonincreasing, we can take \(\varepsilon _{0}\) small enough such that \(\gamma _{1}-c\varepsilon _{0}>0\) to get that there exists \(\gamma '_{3}>0\) such that

$$\begin{aligned} \bigl(\zeta ^{2q-1}E^{2q-2}\tilde{E} \bigr)'(t)\leq \zeta ^{2q-1}(t)E^{2q-2}(t) \tilde{E}'(t)\leq -{\gamma '_{3}}(\zeta E)^{2q-1}(t)-cE'(t). \end{aligned}$$
(3.22)

Define

$$ J(t)=\zeta ^{2q-1}E^{2q-2}\tilde{E}. $$

Clearly, \(J(t)\sim E(t)\). Then for some \(\gamma _{4}>0\),

$$\begin{aligned} J'(t)\leq -\gamma _{3}(\zeta E)^{2q-1}(t)\leq -\gamma _{4}\zeta ^{2q-1}(t)J^{2q-1}(t). \end{aligned}$$
(3.23)

Integrating (3.23) over \((t_{1},t)\) yields

$$ E(t)\leq c \biggl(1+ \int ^{t}_{t_{1}}\zeta ^{2q-1}(s)\,ds \biggr)^{-\frac{1}{2q-2}}. $$

To prove (2.17), we first observe from (2.15)2 and (2.16) that

$$ \int ^{\infty}_{0}E(t)\,dt< +\infty . $$

Define

$$ \theta (t)= \int ^{t}_{0} \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert ^{2}\,ds. $$

We have

$$ \begin{aligned} \theta (t)&\leq 2 \int ^{t}_{0}\bigl( \bigl\Vert \nabla v(t) \bigr\Vert ^{2}+ \bigl\Vert \nabla v(t-s) \bigr\Vert ^{2} \bigr)\,ds \\ &\leq 4l^{-1} \int ^{t}_{0}\bigl(E(t)+E(t-s)\bigr)\,ds \\ &\leq 8l^{-1} \int ^{t}_{0}E(t-s)\,ds=8l^{-1} \int ^{t}_{0}E(s)\,ds \\ &\leq 8l^{-1} \int ^{\infty}_{0}E(s)\,ds< +\infty . \end{aligned} $$
(3.24)

Multiplying (3.15) by \(\zeta (t)\) and using (3.24) together with Jensen’s inequality, we obtain

$$ \begin{aligned} \zeta (t)\tilde{E}'(t)&\leq -\gamma _{1}\zeta (t)E(t)+ \gamma _{2}\zeta (t) (k\circ \nabla v) (t) \\ &\leq -\gamma _{1}\zeta (t)E(t)+c\frac{\theta (t)}{\theta (t)} \int ^{t}_{0}\bigl( \zeta ^{q}k^{q} \bigr)^{\frac{1}{q}}(s) \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert ^{2}\,ds \\ &\leq -\gamma _{1}\zeta (t)E(t)+c \theta (t) \biggl( \frac{1}{\theta (t)} \int ^{t}_{0}\zeta ^{q}(s)k^{q}(s) \bigl\Vert \nabla v(t)- \nabla v(t-s) \bigr\Vert ^{2}\,ds \biggr)^{\frac{1}{q}}, \end{aligned} $$
(3.25)

where we assume that \(\theta (t)\) is positive, otherwise, for any \(t\geq t_{1}\), \(E(t)\leq ce^{-kt}\), \(k>0\). Hence it is inferred from (3.25) that

$$ \begin{aligned} \zeta (t)\tilde{E}'(t) & \leq -\gamma _{1}\zeta (t)E(t)+c \theta ^{\frac{q-1}{q}}(t) \biggl(\zeta ^{q-1}(0) \int ^{t}_{0}\zeta (s)k^{q}(s) \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert ^{2}\,ds \biggr)^{\frac{1}{q}} \\ &\leq -\gamma _{1}\zeta (t)E(t)+c\bigl(-k'\circ \nabla v \bigr)^{\frac{1}{q}}(t) \\ &\leq -\gamma _{1}\zeta (t)E(t)+c\bigl(-E'(t) \bigr)^{\frac{1}{q}}. \end{aligned} $$
(3.26)

Consequently, it is concluded by multiplying (3.26) by \(\zeta ^{q-1}(t)E^{q-1}(t)\) and repeating the above steps that

$$\begin{aligned} E(t)\leq c \biggl(1+ \int ^{t}_{t_{1}}\zeta ^{q}(s)\,ds \biggr)^{- \frac{1}{q-1}}, \quad 1< q< \frac{3}{2}. \end{aligned}$$

This ends the proof of Theorem 2.2. □

4 Conclusion

This paper studies a Balakrishnan–Taylor viscoelastic strongly delayed wave equation. Under suitable assumptions on \(\mu _{1}\), \(\mu _{2}\) and the relaxation function, a more general energy decay result is proved by using Lyapunov functionals. The decay rate we established is more general than earlier results, hence our result improves and generalizes some previous works. Several rates of energy decay are illustrated by provided examples.

Availability of data and materials

No data were generated or analyzed during the current study.

References

  1. Alabau-Boussouira, F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51, 61–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alabau-Boussouira, F.: A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems. J. Differ. Equ. 248, 1473–1517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Acad. Sci. Paris, Ser. I 347, 867–872 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balakrishnan, A.V., Taylor, L.W.: Distributed parameter nonlinear damping models for flight structures. In: Proceedings “Daming 89”, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB (1989)

    Google Scholar 

  5. Bass, R.W., Zes, D.: Spillover nonlinearlity and flexible structures. In: Taylor, L.W. (ed.) The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA ConFlight Dynamics Lad and Air Force Wright Aeronautral Labs, WPAFB (1989), pp. 1–14 (1991). Conference Publication 10065

    Google Scholar 

  6. Benaissa, A., Benguessoum, A., Messaoudi, S.A.: Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback. Int. J. Dyn. Syst. Differ. Equ. 5, 1–26 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Clark, H.R.: Elastic membrane equation in bounded and unbounded domains. Electron. J. Qual. Theory Differ. Equ. 2002, 11 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Dai, Q., Yang, Z.: Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 65, 885–903 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Datko, R., Lagness, J., Yang, Z.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 48(8), 5028–5052 (2010)

    MathSciNet  Google Scholar 

  10. Feng, B.: General decay for a viscoelastic wave equation with strong time-dependent delay. Bound. Value Probl. 57, 1–11 (2017)

    MathSciNet  Google Scholar 

  11. Feng, B., Kang, Y.H.: Decay rates for a viscoelastic wave equation with Balakrishnan–Taylor and frictional dampings. Topol. Methods Nonlinear Anal. 54, 321–343 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Feng, B., Soufyane, A.: Existence and decay rates for a coupled Balakrishnan–Taylor viscoelastic system with dynamic boundary conditions. Math. Methods Appl. Sci. 43, 3375–3391 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gheraibia, B., Boumaza, N.: General decay result of solutions for viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term. Z. Angew. Math. Phys. 71, 198 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ha, T.G.: General decay rate estimates for viscoelastic wave equation with Balakrishnan–Taylor damping. Z. Angew. Math. Phys. 67, 32 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ha, T.G.: Stabilization for the wave equation with variable coefficients and Balakrishnan–Taylor damping. Taiwan. J. Math. 21, 807–817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hao, J., Wang, F.: General decay rate for weak viscoelastic wave equation with Balakrishnan–Taylor damping and time-varying delay. Comput. Math. Appl. 78, 2632–2640 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, J.R., Lee, M.J., Park, S.H.: Asymptotic stability of a viscoelastic problem with Balakrishnan–Taylor damping and time-varying delay. Comput. Math. Appl. 74, 1506–1515 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang, Y.H.: Energy decay rates for the Kirchhoff type wave equation with Balakrishnan–Taylor and acoustic boundary. East Asian Math. J. 30, 249–258 (2014)

    Article  MATH  Google Scholar 

  19. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065–1082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, M.J., Kim, D., Park, J.Y.: General decay of solutions for Kirchhoff type containing Balakrishnan–Taylor damping with a delay and acoustic boundary conditions. Bound. Value Probl. 173, 1–21 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Lee, M.J., Park, J.Y., Kang, Y.H.: Asymptotic stability of a problem with Balakrishnan–Taylor damping and a time delay. Comput. Math. Appl. 70, 478–487 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, W.J.: General decay of the solution for viscoelastic wave equation with a time-varying delay term in the internal feedback. J. Math. Phys. 54, 043504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W.J.: General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term. Taiwan. J. Math. 17, 2101–2115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, W.J., Zhu, B.Q., Li, G., Wang, D.H.: General decay for a viscoelastic Kirchhoff equation with Balakrishnan–Taylor damping, dynamic boundary conditions and a time-varying delay term. Evol. Equ. Control Theory 6, 239–260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Messaoudi, S.A.: On the control of solutions of a viscoelastic equation. J. Franklin Inst. 344, 765–776 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Messaoudi, S.A.: General decay of solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69, 2589–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457–1467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Messaoudi, S.A.: General decay of solutions of a weak viscoelastic equation. Arab. J. Sci. Eng. 36, 1569–1579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Messaoudi, S.A., Fareh, A., Doudi, N.: Well posedness and exponential stability in a wave equation with a strong damping and a strong delay. J. Math. Phys. 57, 111501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21, 935–958 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Nicaise, S., Pignotti, C.: Interior feedback stabilization of wave equations with time dependent delay. Electron. J. Differ. Equ. 2011, 41 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Nicaise, S., Valein, J., Fridman, E.: Stabilization of the heat and the wave equations with boundary time-varying delays. Discrete Contin. Dyn. Syst., Ser. S 2, 559–581 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Park, S.H.: Arbitrary decay of energy for a viscoelastic problem with Balakrishnan–Taylor damping. Taiwan. J. Math. 20, 129–141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tatar, N.-E., Zarai, A.: Global existence and polynomial decay for a problem with Balakrishnan–Taylor damping. Arch. Math. 46, 47–56 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Tatar, N.-E., Zarai, A.: Exponential stability and blow up for a problem with Balakrishnan–Taylor damping. Demonstr. Math. 44, 67–90 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Tatar, N.-E., Zarai, A.: On a Kirchhoff equation with Balakrishnan–Taylor damping and source term. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18, 615–627 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Wu, S.T.: General decay of solutions for a viscoelastic equation with Balakrishnan–Taylor damping and nonlinear boundary damping-source interactions. Acta Math. Sci. 35B, 981–994 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, G., Yung, S., Li, L.: Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12, 770–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yoon, M., Lee, M.J., Kang, J.R.: General decay for weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions. Bound. Value Probl. 2022, 51 (2022). https://doi.org/10.1186/s13661-022-01633-x

    Article  MathSciNet  MATH  Google Scholar 

  41. You, Y.: Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan–Taylor damping. Abstr. Appl. Anal. 1, 83–102 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zarai, A., Tatar, N.-E.: Non-solvability of Balakrishnan–Taylor equation with memory term in \(\mathbb{R}^{N}\). In: Anastassiou, G., Duman, O. (eds.) Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics & Statistics, vol. 41. Springer, New York (2013)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees for their valuable suggestions.

Funding

This work was supported by the Natural Science Foundation of Ningxia (2020AAC03233) and by the General Project of North Minzu University (2022XYZSX02).

Author information

Authors and Affiliations

Authors

Contributions

Haiyan Li wrote the main manuscript text and reviewed the manuscript independently .

Corresponding author

Correspondence to Haiyan Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H. Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan–Taylor damping. Bound Value Probl 2023, 60 (2023). https://doi.org/10.1186/s13661-023-01749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01749-8

MSC

Keywords