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1 Introduction
In this paper, we consider the following stochastic floating beam equations:

⎧
⎪⎨

⎪⎩

utt + �u + �ut + bu+ + f (u) = q(x)Ẇ , in � × [τ , +∞), τ ∈ R,
�u(x, t) = ∇�u(x, t) = , x ∈ ∂�, t ≥ τ ,
u(x, τ ) = u(x), ut(x, τ ) = u(x),

(.)

where b >  is a measure of the cross section of the floating beam, � is an open bounded
subset of R with sufficiently smooth boundary ∂�. u = u(x, t) represents the depth of the
bottom of the floating beam as it floats, u+ = u for u ≥  and u+ =  for u < . q(x) ∈ H(�)
is not identically equal to zero, f is a nonlinear function satisfying certain conditions.
Ẇ is the derivative of a one-dimensional two-sided real-valued Wiener process W (t) and
q(x)Ẇ formally describes white noise.

We assume that the nonlinear function f ∈ C(R,R) with f () = , which satisfies the
following assumptions.

(a) Growth conditions:

∣
∣f (s)

∣
∣ ≤ C

(
 + |s|p), p ≥ ,∀s ∈R, (.)

where C is a positive constant. For example, obviously, f (s) = |s|p–s satisfies (.).
(b) Dissipation conditions:

F(s) :=
∫ s


f (r) dr ≥ C

(|s|p+ – 
)
, p ≥ ,∀s ∈R (.)
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and

sf (s) ≥ C
(
F(s) – 

)
, ∀s ∈R, (.)

where C, C are positive constants.
When f (u) ≡  and q(x) ≡ , equation (.) is regarded as a model of naval structures,

which is originally in [] introduced by Lazer and McKenna. In the actual problems, it can
be presented as ships, submarines, hovercraft, gliders etc. To the best of our knowledge,
the author investigated the existence of a global attractor for the deterministic floating
beam in [], that is, the ‘noise’ is absent in (.). Until now, we find that no one else has
studied the long-time behavior of the solutions about these problems, it is just our interest
in this paper. As far as the other related problems are concerned, we refer the reader to
[–] and the references therein.

It is well known that Crauel and Flandoli originally introduced the random attractor
for the infinite-dimensional RDS [, ]. A random attractor of RDS is a measurable and
compact invariant random set attracting all orbits. It is the appropriate generalization of
the now classical attractor from the deterministic dynamical systems to RDS. The reason
is that if such a random attractor exists, it is the smallest attracting compact set and the
largest invariant set []. These abstract results have been successfully applied to many
stochastic dissipative partial differential equations. For instance, Fan [] proved the ex-
istence of a random attractor for a damped Sine-Gordon equation with white noise. The
existence of random attractors for the wave equations has been investigated by several au-
thors [–]. Yang et al. [] studied random attractors for stochastic semi-linear degen-
erate parabolic equations. Ma and Ma [] investigated attractors for stochastic strongly
damped plate equations with additive noise. In this article, we study the existence of ran-
dom attractors for the floating beam equation with white noise by means of the methods
established in [–].

The outline of this paper is as follows. Background material on RDS and random at-
tractors is iterated in Section . We present the existence and uniqueness of the solution
corresponding to system (.) which determines RDS in Section . Finally, the existence
of random attractors for RDS is shown in the last section.

2 Random dynamical system
In this section, we recall some basic concepts related to RDS and a random attractor for
RDS in [–], which are important for getting our main results.

Let (X,‖ · ‖X) be a separable Hilbert space with Borel σ -algebra B(X), and let (�,F , P)
be a probability space. θt : � → �, t ∈ R is a family of measure preserving transformations
such that (t,ω) �→ θtω is measurable, θ = id and θt+s = θtθs for all t, s ∈ R. The flow θt

together with the probability space (�,F , P, (θt)t∈R) is called a metric dynamical system.

Definition . Let (�,F , P, (θt)t∈R) be a metric dynamical system. Suppose that the map-
ping φ : R+ × � × X → X is (B(R+) × F × B(X),B(X))-measurable and satisfies the fol-
lowing properties:

(i) φ(,ω)x = x, x ∈ X and ω ∈ �;
(ii) φ(t + s,ω) = φ(t, θsω) ◦ φ(s,ω) for all t, s ∈R

+, x ∈ X and ω ∈ �.
Then φ is called a random dynamical system (RDS). Moreover, φ is called a continuous
RDS if φ is continuous with respect to x for t ≥  and ω ∈ �.
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Definition . A set-valued map D : � → X is said to be a closed (compact) random set
if D(ω) is closed (compact) for P-a.s. ω ∈ �, and ω �→ d(x, D(ω)) is P-a.s. measurable for
all x ∈ X.

Definition . If K and B are random sets such that for P-a.s. ω there exists a time tB(ω)
such that for all t ≥ tB(ω),

φ(t, θ–tω)B(θ–tω) ⊂ K(ω),

then K is said to absorb B, and tB(ω) is called the absorption time.

Definition . A random set A = {A(ω)}ω∈� ⊂ X is called a random attractor associated
to the RDS φ if P-a.s.:

(i) A is a random compact set, i.e., A(ω) is compact for P-a.s. ω ∈ �, and the map
ω �→ d(x, A(ω)) is measurable for every x ∈ X ;

(ii) A is φ-invariant, i.e., φ(t,ω)A(ω) = A(θtω) for all t ≥  and P-a.s. ω ∈ �;
(iii) A attracts every set B in X , i.e., for all bounded (and non-random) B ⊂ X ,

lim
t→∞ d

(
φ(t, θ–tω)B(θ–tω), A(ω)

)
= ,

where d(·, ·) denotes the Hausdorff semi-distance:

d(A, B) = sup
x∈A

inf
y∈B

d(x, y), A, B ∈ X.

Note that φ(t, θ–tω)x can be interpreted as the position of the trajectory which was in x
at time –t. Thus, the attraction property holds from t = –∞.

Theorem . (Existence of a random attractor []) Let φ be a continuous random dy-
namical system on X over (�,F , P, (θt)t∈R). Suppose that there exists a random compact
set K(ω) absorbing every bounded non-random set B ⊂ X. Then the set

A =
{

A(ω)
}

ω∈�
=

⋃

B⊂X

	B(ω)

is a global random attractor for φ, where the union is taken over all bounded B ⊂ X, and
	B(ω) is the ω-limits set of B given by

	B(ω) =
⋂

s≥

⋃

t≥s
φ(t, θ–tω)B(θ–tω).

3 Existence and uniqueness of solutions
With the usual notation, we denote

H = L(�), V = H(�),

D(A) = H(�) ∩ H
(�),

D
(
A) =

{
u ∈ H(�) : Au ∈ L(�)

}
,
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where A = –�, A = �. We denote H , V with the following inner products and norms,
respectively:

(u, v) =
∫

�

uv dx, ‖u‖ = (u, u), ∀u, v ∈ H ,

(
(u, v)

)
=

∫

�

�u�v dx, ‖u‖
 =

(
(u, u)

)
, ∀u, v ∈ V .

And we introduce the space E = D(A) × H which is used throughout the paper and endow
the space E with the following usual scalar product and norm:

(y, y)E =
(
(u, u)

)
+ (v, v), ‖y‖

E = (y, y)E

for all yi = (ui, vi)T , y = (u, v)T ∈ E, here T denotes the transposition. Moreover, the norm
of Lp(�) is written as ‖ · ‖p.

Let λ >  be the eigenvalue of Av = λv, �v(x, t) = ∇�v(x, t) = , x ∈ ∂�, by the Poincaré
inequality, we have

‖u‖
 ≥ λ‖u‖, ∀u ∈ D(A).

It is convenient to reduce (.) to an evolution equation of the first order in time

⎧
⎪⎨

⎪⎩

ut = v,
vt = –Au – Av – bu+ – f (u) + q(x)Ẇ ,
u(x, τ ) = u(x), ut(x, τ ) = u(x), x ∈ �,

(.)

whose equivalent Itó equation is

⎧
⎪⎨

⎪⎩

du = v dt,
dv = –Au dt – Av dt – bu+ dt – f (u) dt + q(x) dW ,
u(x, τ ) = u(x), ut(x, τ ) = u(x), x ∈ �,

(.)

where W (t) is a one-dimensional two-sided real-valued Wiener process on (�,F , P,
(θt)t∈R). We can assume without loss of generality that

� =
{
ω(t) = W (t) ∈ C(R,R) : ω() = 

}
,

that P is a Wiener measure. We can define a family of measure preserving and ergodic
transformations (flow) {θt}t∈R by

θtω(·) = ω(· + t) – ω(t), t ∈R,ω ∈ �.

Let z = v–q(x)W , then v = z+q(x)W . We consider the random partial differential equation
equivalent to (.)

⎧
⎪⎨

⎪⎩

du
dt = z + q(x)W ,
dz
dt = –Au – Az – bu+ – f (u) – Aq(x)W ,
u(x, τ ) = u(x), z(τ ,ω) = z(x, τ ,ω) = u(x) – q(x)W (τ ), x ∈ �.

(.)
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It apparently contrasts to the stochastic differential equation (.), no stochastic differen-
tial appears here. Let

ϕ =

(
u
z

)

, L =

(
 I

–A –A

)

and

F(ϕ,ω) =

(
q(x)W

–bu+ – f (u) – Aq(x)W

)

,

then (.) can be written as

ϕ̇ = Lϕ + F(ϕ,ω), ϕ(τ ,ω) =
(
u, z(τ ,ω)

)T . (.)

We know from [] that L is the infinitesimal generators of C-semigroup eLt on E. It is
not difficult to check that the function F(·,ω) : E �→ E is locally Lipschitz continuous with
respect to ϕ and bounded for every ω ∈ �. By the classical semigroup theory of existence
and uniqueness of solutions of evolution differential equations [], the random partial
differential equation (.) has a unique solution in the mild sense

ϕ(t,ω) = eL(t–τ )ϕ(τ ,ω) +
∫ t

τ

eL(t–s)F
(
ϕ(s),ω

)
ds

for any ϕ(τ ,ω) ∈ E. We can prove that for P-a.s. every ω ∈ � the following statements hold
for all T > :

(i) If ϕ(τ ,ω) ∈ E, then ϕ(t,ω) ∈ C([τ , τ + T); D(A)) × C([τ , τ + T); H).
(ii) ϕ(t,ϕ(τ ,ω)) is continuous in t and ϕ(τ ,ω).

(iii) The solution mapping of (.) satisfies the properties of RDS.
Equation (.) has a unique solution for every ω ∈ �. Hence the solution mapping

S̄(t,ω) : ϕ(τ ,ω) �→ ϕ(t,ω) (.)

generates a random dynamical system. So the transformation

S(t,ω) : ϕ(τ ,ω) +
(
, q(x)W (τ )

)T �→ ϕ(t,ω) +
(
, q(x)W (t)

)T (.)

also determines a random dynamical system corresponding to equation (.).

4 Existence of a random attractor
In this section, we prove the existence of a random attractor for RDS (.) in the space E.

Let z̄ = z + εu, ψ = (u, z̄)T , where

ε =
λ

λ + λ + 
. (.)

Hence equation (.) can be written as

ψ̇ + Qψ = F̄(ψ ,ω), ψ(τ ,ω) =
(
u, z(τ ,ω) + εu

)T , t ≥ τ , (.)
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where

Q =

(
εI –I

( – ε)A + εI A – εI

)

,

F̄(ψ ,ω) =

(
q(x)W

–bu+ – f (u) – Aq(x)W + εq(x)W

)

.

The mapping

S̄ε(t,ω) :
(
u, z(τ ,ω) + εu

)T �→ (
u(t), z(t) + εu(t)

)T , E → E, t ≥ τ

is defined by (.).
To show the conjugation of the solution of the stochastic partial differential equation

(.) and the random partial differential equation (.), we introduce the homeomorphism

Rε : (u, z)T �→ (u, z + εu)T

with the inverse homeomorphism R–ε . Then the transformation

S̄ε(t,ω) = RεS(t,ω)R–ε (.)

also determines RDS corresponding to equation (.). Therefore, for RDS (.) we only
need consider the equivalent random dynamical system Sε(t,ω) = RεS(t,ω)R–ε , where
Sε(t,ω) is decided by

ηt + Qη = G(η,ω), η(τ ,ω) = (u, u + εu)T , t ≥ τ , (.)

where η(t) = (u(t), ut(t) + εu(t))T and

G(η,ω) =

(


–bu+ – f (u) + q(x)Ẇ

)

.

Next, we prove a positivity property of the operator Q in E that plays a vital role through-
out the paper.

Lemma . For any ϕ = (u, z)T ∈ E, there holds

(Qϕ,ϕ)E ≥ ε


‖ϕ‖

E +
ε


‖u‖

 +
λ


‖z‖.

Proof Since Qϕ = (εu – z, ( – ε)Au + εu + Az – εz)T , using the Poincaré inequality and
the Young inequality, we get

(Qϕ,ϕ)E = ε‖u‖
 – ε(Au, Az) + ε(u, z) + ‖Az‖ – ε‖z‖

≥ ε‖u‖
 –

ε


‖u‖

 – ε‖Az‖ –
ε


‖u‖

 –
ε

λ
‖z‖ + ‖Az‖ – ε‖z‖
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≥ ε


‖ϕ‖

E +
ε


‖u‖

 + ( – ε)λ‖z‖ –
(

ε

λ
+

ε



)

‖z‖,

=
ε


‖ϕ‖

E +
ε


‖u‖

 +
λ


‖z‖,

noting that we used the fact ε = λ

λ+λ+ in the last inequality. �

Lemma . Let (.)-(.) hold. There exist a random variable r(ω) >  and a bounded
ball B of E centered at  with random radius r(ω) >  such that for any bounded
non-random set B of E, there exists a deterministic T(B) ≤ – such that the solution
ψ(t,ω;ψ(τ ,ω)) = (u(t,ω), z̄(t,ω))T of (.) with initial value (u, u + εu)T ∈ B satisfies,
for P-a.s. ω ∈ �,

∥
∥ψ

(
–,ω;ψ(τ ,ω)

)∥
∥

E ≤ r(ω), τ ≤ T(B),

and for all τ ≤ t ≤ ,

∥
∥ψ

(
t,ω;ψ(τ ,ω)

)∥
∥

E

≤ e–ε(t–τ )
(

‖u‖
 + ‖u + εu‖ + ‖q‖∣∣W (τ )

∣
∣ +

∫

�

F(u) dx
)

+ r
 (ω), (.)

where z̄(t,ω) = ut(t) + εu(t) – q(x)W (t).

Besides, it is easy to deduce a similar absorption result for

η(–) = (η,η) =
(
u(–), ut(–) + εu(–)

)T

instead of ψ(–).

Proof Taking the inner product in E of (.) with ψ = (u, z̄)T , in which z̄ = ut +εu – q(x)W ,
we find that




d
dt

‖ψ‖
E + (Qψ ,ψ)E =

(
F̄(ψ ,ω),ψ

)

E , ∀t ≥ τ , (.)

where

(
F̄(ψ ,ω),ψ

)

E =
((

u, q(x)W
))

– b
(
u+, z̄

)
–

(
f (u), z̄

)
–

(
Aq(x)W , z̄

)
+ ε

(
q(x)W , z̄

)
. (.)

We deal with the terms in (.) one by one as follows:

((
u, q(x)W

)) ≤ ε


‖u‖

 +
‖q‖


ε

∣
∣W (t)

∣
∣; (.)

–b
(
u+, z̄

)
= –b

(
u+, ut + εu – q(x)W

)

= –



d
dt

b
∥
∥u+∥

∥ – εb
∥
∥u+∥

∥ + b
(
u+, q(x)W

)

≤ –



d
dt

b
∥
∥u+∥

∥ –
εb


∥
∥u+∥

∥ +
b‖q‖

ε

∣
∣W (t)

∣
∣; (.)
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∣
∣–

(
Aq(x)W , z̄

)∣
∣ ≤ ‖q‖


λ

∣
∣W (t)

∣
∣ +

λ


‖z̄‖; (.)

ε
(
q(x)W , z̄

) ≤ ε‖q‖

λ

∣
∣W (t)

∣
∣ +

λ


‖z̄‖. (.)

Using (.)-(.) and the Hölder inequality, we conclude that

(
f (u), q(x)W (t)

)

≤ C

∫

�

(
 + |u|p)q(x)W (t) dx

≤ C‖q‖∣∣W (t)
∣
∣ + C

(∫

�

|u|p+ dx
) p

p+ ‖q‖p+
∣
∣W (t)

∣
∣

≤ C‖q‖∣∣W (t)
∣
∣ + CC

– p
p+



(∫

�

(
F(u) + C

)
dx

) p
p+ ‖q‖p+

∣
∣W (t)

∣
∣

≤ C‖q‖∣∣W (t)
∣
∣ +

εCC–




∫

�

F(u) dx +
C

ε
‖q‖p+

p+
∣
∣W (t)

∣
∣p+ +

εC|�|


. (.)

Inequality (.) together with (.) yields

–
(
f (u), z̄

)

= –
(
f (u), ut + εu – qW (t)

)

≤ –
d
dt

∫

�

F(u) dx – εC

∫

�

F(u) dx + εC|�| +
(
f (u), qW (t)

)

≤ –
d
dt

∫

�

F(u) dx –
ε(C – CC–

 )


∫

�

F(u) dx + C‖q‖∣∣W (t)
∣
∣

+
C

ε
‖q‖p+

p+
∣
∣W (t)

∣
∣p+ +

ε(C + C)


|�|. (.)

Therefore, collecting with (.)-(.) and Lemma ., we get that

d
dt

(

‖ψ‖
E + b

∥
∥u+∥

∥ + 
∫

�

F(u) dx + C|�|
)

+ ε‖ψ‖
E + εb

∥
∥u+∥

∥ + ε
(
C – CC–


)
∫

�

F(u) dx + εC|�|

≤ M
(
 +

∣
∣W (t)

∣
∣ +

∣
∣W (t)

∣
∣ +

∣
∣W (t)

∣
∣p+),

where M = max{ε(C + C + C)|�|, C‖q‖, ε‖q‖
+λ‖q‖

+(ε+λb)‖q‖

ελ
, C

ε
‖q‖p+

p+}. Using

(.), we have the fact 
∫

�
F(u) dx + C|�| ≥ . Choosing ε = min{ε, ε(C–CC–

 )
 }, and

C > CC–


 , by the Gronwall lemma, we conclude that

∥
∥ψ

(
t,ω;ψ(τ ,ω)

)∥
∥

E

≤ e–ε(t–τ )
(

∥
∥ψ(τ ,ω)

∥
∥

E + b
∥
∥u+


∥
∥ + 

∫

�

F(u) dx + C|�|
)

+ M
∫ t

τ

e–ε(t–s)( +
∣
∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣p+)ds
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≤ e–ε(t–τ )
(

‖u‖
 + ‖u + εu‖ + ‖q‖∣∣W (τ )

∣
∣ + b

∥
∥u+


∥
∥ +

∫

�

F(u) dx + C|�|
)

+ M
∫ t

τ

e–ε(t–s)( +
∣
∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣p+)ds. (.)

Take

r
(ω) = 

(
 + sup

τ≤–
eετ‖q‖∣∣W (τ )

∣
∣

)
+

M
ε

+ M
∫ –

–∞
e–ε(––s)(∣∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣p+)ds

and

r
 (ω) =

M
ε

+ M
∫ 

–∞
eεs(∣∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣ +

∣
∣W (s)

∣
∣p+)ds.

Since limt→∞ W (t)
t = , r

(ω) and r
 (ω) are finite P-a.s., given a bounded set B of E, choose

T(B) ≤ – such that

e–ε(––τ )
(

‖u‖
 + ‖u + εu‖ + b

∥
∥u+


∥
∥ +

∫

�

F(u) dx + C|�|
)

≤  (.)

for all (u, u + εu)T ∈ B, and

eετ
(

‖u‖
 + ‖u + εu‖ + b

∥
∥u+


∥
∥ +

∫

�

F(u) dx + C|�|
)

≤  (.)

for all (u, u + εu)T ∈ B, and for all τ ≤ T(B).
This completes the proof of Lemma .. �

Let u(t) be a solution of problem (.) with initial value (u, u + εu)T ∈ B. We make the
decomposition u(t) = y(t) + y(t), where y(t) and y(t) satisfy

⎧
⎪⎨

⎪⎩

ytt + �y + �yt = , in � × [τ , +∞), τ ∈R,
�y(x, t) = ∇�y(x, t) = , x ∈ ∂�, t ≥ τ ,
y(x, τ ) = u(x), yt(x, τ ) = u(x), x ∈ �

(.)

and
⎧
⎪⎨

⎪⎩

ytt + �y + �yt + bu+ + f (u) = q(x)Ẇ , in � × [τ , +∞), τ ∈ R,
�y(x, t) = ∇�y(x, t) = , x ∈ ∂�, t ≥ τ ,
y(x, τ ) = , yt(x, τ ) = , x ∈ �.

(.)

Lemma . Let B be a bounded non-random subset of E. For any (u, u + εu)T ∈ B,

∥
∥Y()

∥
∥

E =
∥
∥y()

∥
∥

 +
∥
∥yt() + εy()

∥
∥ ≤ (‖u‖

 + ‖u + εu‖) eετ

 – ε
, (.)

where Y = (y, yt + εy)T satisfies (.).
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Proof Taking the scalar product in L(�) of (.) with v = yt + εy, we conclude that




d
dt

(
( – ε)‖y‖

 + ‖v‖) + ε( – ε)‖y‖
 + ‖v‖

 – ε‖v‖ + ε(y, v) = . (.)

Due to (.), using the Hölder inequality and the Young inequality, we get that

ε( – ε)‖y‖
 + ‖v‖

 – ε‖v‖ + ε(y, v)

≥ ε( – ε)‖y‖
 + ‖v‖

 – ε‖v‖ –
ε( – ε)


‖y‖

 –
ε

( – ε)λ
‖v‖

≥ ε( – ε)


‖y‖
 +

(

λ –
ε

λ
– ε

)

‖v‖

≥ ε( – ε)


‖y‖
 +

ε


‖v‖. (.)

Associating (.) with (.), we have that

d
dt

(
( – ε)‖y‖

 + ‖v‖) + ε
(
( – ε)‖y‖

 + ‖v‖) ≤ .

The Gronwall lemma leads to (.). �

Lemma . Assume that (.) holds, there exists a random radius r(ω) such that for P-a.s.
ω ∈ �,

∥
∥A


 Y

(
,ω; Y(τ ,ω)

)∥
∥

E ≤ r
(ω), (.)

where Y = (y, yt + εy – q(x)W )T satisfies (.).

Proof Provided that Y = (y, yt + εy – q(x)W )T , then equation (.) can be reduced to

Yt + QY = H(Y,ω), Y(τ ) =
(
, –q(x)W (τ )

)T , t ≥ τ , (.)

where

H(Y,ω) =

(
q(x)W (t)

–bu+ – f (u) – Aq(x)W (t) + εq(x)W (t)

)

.

Taking the inner product in E of (.) with AY, we have that




d
dt

∥
∥A


 Y

∥
∥

E + (QY, AY)E =
(
H(Y,ω), AY

)

E , (.)

where

(
H(Y,ω), AY

)

E

=
((

Ay, q(x)W
))

–
(
bu+ + f (u) + Aq(x)W (t) – εq(x)W (t), A

(
yt + εy – q(x)W

))
. (.)
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According to Lemma ., we have that

(QY, AY)E ≥ ε


∥
∥A


 Y

∥
∥

E +
ε


∥
∥A


 y

∥
∥

 +
λ


∥
∥A



(
yt + εy – q(x)W

)∥
∥. (.)

Thanks to the Young inequality, we obtain that

((
Ay, q(x)W

)) ≤ ε


∥
∥A


 y

∥
∥

 +

ε

∥
∥A


 q

∥
∥



∣
∣W (t)

∣
∣; (.)

∣
∣–

(
bu+, A

(
yt + εy – q(x)W

))∣
∣

≤ b

λ

∥
∥A


 u+∥

∥ +
λ


∥
∥A



(
yt + εy – q(x)W

)∥
∥; (.)

∣
∣–

(
Aq(x)W (t), A

(
yt + εy – q(x)W

))∣
∣

≤ 
λ

∥
∥A


 q

∥
∥∣∣W (t)

∣
∣ +

λ


∥
∥A



(
yt + εy – q(x)W

)∥
∥; (.)

∣
∣
(
εq(x)W (t), A

(
yt + εy – q(x)W

))∣
∣

≤ ε

λ

∥
∥A


 q

∥
∥∣∣W (t)

∣
∣ +

λ


∥
∥A



(
yt + εy – q(x)W

)∥
∥. (.)

By (.), (.) and the Sobolev embedding theorem, we show that f (s) is uniformly
bounded in L∞, that is, there exists a constant M >  such that

∣
∣f ′(s)

∣
∣
L∞ ≤ M. (.)

Combining with (.), the Young inequality and the Sobolev embedding theorem, it fol-
lows that

∣
∣–

(
f (u), A

(
yt + εy – q(x)W

))∣
∣

≤ ∥
∥A


 f (u)

∥
∥
∥
∥A



(
yt + εy – q(x)W

)∥
∥

≤ μM

λ
‖u‖

 +
λ


∥
∥A



(
yt + εy – q(x)W

)∥
∥, (.)

where μ is a positive constant. Thus, collecting all (.)-(.) and (.), from (.) we
have, for τ ≤ T(B),

d
dt

∥
∥A


 Y

∥
∥

E +
∥
∥A


 Y

∥
∥

E

≤ μ(b + M)
λ

‖u‖
 +

(

ε

∥
∥A


 q

∥
∥

 +

λ

∥
∥A


 q

∥
∥ +

ε

λ

∥
∥A


 q

∥
∥

)
∣
∣W (t)

∣
∣

≤ μ(b + M)
λ

(

e–ε(t–τ )
(

‖u‖
 + ‖u + εu‖ + ‖q‖∣∣W (τ )

∣
∣

+
∫

�

F(u) dx
)

+ r
 (ω)

)

+
(


ε

∥
∥A


 q

∥
∥

 +

λ

∥
∥A


 q

∥
∥ +

ε

λ

∥
∥A


 q

∥
∥

)
∣
∣W (t)

∣
∣, τ ≤ t ≤ .
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Applying the Gronwall lemma, we obtain that

∥
∥A


 Y

(
,ω; Y(τ ,ω)

)∥
∥

E

≤ eετ
∥
∥A


 q

∥
∥∣∣W (τ )

∣
∣ +

μ(b + M)
λ

(
eετ

ε – ε

(

‖u‖
 + ‖u + εu‖

+ ‖q‖∣∣W (τ )
∣
∣ +

∫

�

F(u) dx
)

+
r

 (ω)
ε

)

+
(


ε

∥
∥A


 q

∥
∥

 +

λ

∥
∥A


 q

∥
∥ +

ε

λ

∥
∥A


 q

∥
∥

)∫ 

τ

eεs∣∣W (s)
∣
∣ ds. (.)

Set

r
(ω) =

∥
∥A


 q

∥
∥

sup
τ≤

eετ
∣
∣W (τ )

∣
∣

+
μ(b + M)

λ(ε – ε)

(
 + ‖q‖ sup

τ≤
eετ

∣
∣W (τ )

∣
∣ + r

 (ω)
)

+
(


ε

∥
∥A


 q

∥
∥

 +

λ

∥
∥A


 q

∥
∥ +

ε

λ

∥
∥A


 q

∥
∥

)∫ 

–∞
eεs∣∣W (s)

∣
∣ ds.

Since limt→∞ W (t)
t = , r

(ω) is finite P-a.s., together with (.) and (.), we have that

∥
∥A


 Y

(
,ω; Y(τ ,ω)

)∥
∥

E ≤ r
(ω)

for all (u, u + εu)T ∈ B and all τ ≤ T(B). �

Theorem . Let (.)-(.) hold, q(x) ∈ H(�). Then the random dynamical system
Sε(t,ω) possesses a nonempty compact random attractor A.

Proof Let B(ω) be the ball of H(�)× (H(�)∩H
(�)) of radius r(ω). From the compact

embedding H(�), it follows that B(ω) is compact in E. For every bounded non-random
set B of E and any ψ() ∈ S̄ε(t, θ–tω)B, from Lemma ., we know that Y() = ψ() –
Y() ∈ B(ω), where Y(t,ω) is given by (.). Therefore, for τ ≤ ,

inf
l()∈B(ω)

∥
∥ψ() – l()

∥
∥

E ≤ ∥
∥Y()

∥
∥

E ≤ (‖u‖
 + ‖u + εu‖) eετ

 – ε
.

Furthermore, for all t ≥ ,

d
(
S̄ε(t, θ–tω)B, B(ω)

) ≤ (‖u‖
 + ‖u + εu‖) e–εt

 – ε
.

Finally, from relation (.) between Sε(t,ω) and S̄ε(t,ω), one can easily obtain that for any
non-random bounded B ⊂ E P-a.s.,

d
(
Sε(t, θ–tω)B, B(ω)

) →  as t → +∞.

Hence, the RDS Sε(t,ω) associated with (.) possesses a uniformly attracting compact set
B(ω) ⊂ E. Then applying Theorem . we complete the proof. �
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