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Abstract
Our work is based on the multiple inequalities illustrated by Boudeliou and Khalaf in
2015. With the help of the Leibniz integral rule on time scales, we generalize a
number of those inequalities to a general time scale. Besides that, in order to obtain
some new inequalities as special cases, we also extend our inequalities to discrete,
quantum, and continuous calculus. These inequalities may be of use in the analysis of
some kinds of partial dynamic equations on time scales and their applications in
environmental phenomena, physical and engineering sciences described by partial
differential equations.
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1 Introduction
In 2015, Boudeliou and Khalaf [15] proved the following inequalities.

Theorem 1.1 Let u, f , φ ∈ C(�,R+) and a ∈ C(�,R+) be nondecreasing with respect to
(x, y) ∈ I1 × I2; let θ ∈ C1(I1, I1), ϑ ∈ C1(I2, I2) be nondecreasing with θ (x) ≤ x on I1, ϑ(y) ≤ y
on I2. Let φ1, φ2 ∈ C(�,R+). Further, let ψ , ω, η ∈ C(R+,R+) be nondecreasing functions
with {ψ ,ω,η}(u) > 0 for u > 0, and limu→+∞ ψ(u) = +∞.

(A1) If u satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)

[
f (s, t)ω

(
u(s, t)

)

+
∫ s

0
φ2(τ , t)ω

(
u(τ , t)

)
dτ

]
dt ds

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
(

p(x, y) +
∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)f (s, t) dt ds

)}
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for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G is defined by (2.3) and

p(x, y) = G
(
a(x, y)

)
+

∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)

(∫ s

0
φ2(τ , t) dτ

)
dt ds

and (x1, y1) ∈ � is chosen so that (p(x, y) +
∫ θ (x)

0
∫ ϑ(y)

0 φ1(s, t)f (s, t) dt ds) ∈ Dom(G–1).
(A2) If u(x, y) satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)

[
f (s, t)ω

(
u(s, t)

)
η
(
u(s, t)

)

+
∫ s

0
φ2(τ , t)ω

(
u(τ , t)

)
dτ

]
dt ds

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
(

F–1
[

F
(
p(x, y)

)
+

∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)f (s, t) dt ds

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G and p are as in (A1), and

F(v) =
∫ v

v0

ds
η(ψ–1(G–1(s)))

, v ≥ v0 > 0, F(+∞) = +∞

and (x1, y1) ∈ � is chosen so that [F(p(x, y)) +
∫ θ (x)

0
∫ ϑ(y)

0 φ1(s, t)f (s, t) dt ds] ∈ Dom(F–1).
(A3) If u(x, y) satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)

[
f (s, t)ω

(
u(s, t)

)
η
(
u(s, t)

)

+
∫ s

0
φ2(τ , t)ω

(
u(τ , t)

)
η
(
u(τ , t)

)
dτ

]
dt ds

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
(

F–1
[

p0(x, y) +
∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)f (s, t) dt ds

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

p0(x, y) = F
(
G

(
a(x, y)

))
+

∫ θ (x)

0

∫ ϑ(y)

0
φ1(s, t)

(∫ s

0
φ2(τ , t) dτ

)
dt ds

and (x1, y1) ∈ � is chosen so that [p0(x, y) +
∫ θ (x)

0
∫ ϑ(y)

0 φ1(s, t)f (s, t) dt ds] ∈ Dom(F–1).

Hilger in his PhD thesis [26] was the first to accomplish the unification and extension
of differential equations, difference equations, q-difference equations, and so on to the
encompassing theory of dynamic equations on time scales.

Throughout this work a knowledge and understanding of time scales and time-scale no-
tation is assumed; for an excellent introduction to the calculus on time scales, see Bohner
and Peterson [11, 13].
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Over several decades Gronwall–Bellman-type inequalities, which have many applica-
tions in stability and oscillation theory, have attracted many researchers, and several re-
finements and extensions have been done to the previous results. For example, Yuzhen Mi
[32] applied his results to study a boundary value problem of differential equations with
impulsive terms. Also, we refer the reader to the works [1, 3, 4, 8, 18–20, 24, 34, 35, 40],
see also [2, 5–7, 9, 10, 16, 17, 22, 27–30, 33, 36, 37].

Before we arrive at the main results in the next section, we need the following theorems
and essential relations on some time scales such as R, Z, hZ and qZ. Note that:

(i) If T = R, then

σ (t) = t, μ(t) = 0, ψ�(t) = ψ ′(t),
∫ b

a
ψ(t)�t =

∫ b

a
ψ(t) dt. (1.1)

(ii) If T = Z, then

σ (t) = t + 1, μ(t) = 1, ψ�(t) = ψ(t + 1) – ψ(t),
∫ b

a
ψ(t)�t =

b–1∑

t=a
ψ(t).

(1.2)

(iii) If T = hZ, then

σ (t) = t + h, μ(t) = h, ψ�(t) =
ψ(t + h) – ψ(t)

h
,

∫ b

a
ψ(t)�t =

b
h –1∑

t= a
h

ψ(th)h.
(1.3)

(iv) If T = qZ, then

σ (t) = qt, μ(t) = (q – 1)t, ψ�(t) =
ψ(qt) – ψ(t)

(q – 1)t
,

∫ b

a
ψ(t)�t = (q – 1)

(logq b)–1∑

t=(logq a)

ψ
(
qt)qt .

(1.4)

Theorem 1.2 If f is �-integrable on [a, b], then so is |f |, and

∣∣∣
∣

∫ b

a
f (t)�t

∣∣∣
∣ ≤

∫ b

a

∣∣f (t)
∣∣�t.

Theorem 1.3 (Chain rule on time scales [12]) Assume that g : R → R is continuous, g :
T → R is �-differentiable on T

κ , and f : R → R is continuously differentiable. Then there
exists c ∈ [t,σ (t)]R with

(f ◦ g)�(t) = f ′(g(c)
)
g�(t). (1.5)

Theorem 1.4 (see [14]) Let t0 ∈ T
κ and k : T×T

κ →R be continuous at (t, t), where t > t0

and t ∈ T
κ . Assume that k�(t, ·) is rd-continuous on [t0,σ (t)]. If for any ε > 0 there exists a
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neighborhood U of t, independent of τ ∈ [t0,σ (t)], such that

∣∣[k
(
σ (t), τ

)
– k(s, τ )

]
– k�(t, τ )

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣, ∀s ∈ U .

If k� denotes the derivative of k with respect to the first variable, then

f (t) =
∫ t

t0

k(t, τ )�τ

yields

f �(t) =
∫ t

t0

k�(t, τ )�τ + k
(
σ (t), t

)
.

Theorem 1.5 ([21, Leibniz rule on time scales]) In the following, by f �(t, s) we mean the
delta derivative of f (t, s) with respect to t. Similarly, f ∇ (t, s) is understood. If f , f �, and
f ∇ are continuous and u, h : T → T are delta differentiable functions, then the following
formulas hold ∀t ∈ T

κ :
(i) [

∫ h(t)
u(t) f (t, s)�s]� =

∫ h(t)
u(t) f �(t, s)�s + h�(t)f (σ (t), h(t)) – u�(t)f (σ (t), u(t));

(ii) [
∫ h(t)

u(t) f (t, s)�s]∇ =
∫ h(t)

u(t) f ∇ (t, s)�s + h∇ (t)f (ρ(t), h(t)) – u∇ (t)f (ρ(t), u(t));
(iii) [

∫ h(t)
u(t) f (t, s)∇s]� =

∫ h(t)
u(t) f �(t, s)∇s + h�(t)f (σ (t), h(t)) – u�(t)f (σ (t), u(t));

(iv) [
∫ h(t)

u(t) f (t, s)∇s]∇ =
∫ h(t)

u(t) f ∇ (t, s)∇s + h∇ (t)f (ρ(t), h(t)) – u∇ (t)f (ρ(t), u(t)).

In this manuscript, by applying Theorem 1.5, we discuss the retarded time scale case
of the inequalities obtained in [15]. Furthermore, these inequalities that are proved here
extend some known results in [23, 31, 38] and also unify the continuous, the discrete, and
the quantum cases.

2 Main results
Lemma 2.1 Suppose that T1, T2 are two times scales and a ∈ C(� = T1 × T2,R+) is non-
decreasing with respect to (x, y) ∈ �. Assume that φ, u, f ∈ C(�,R+), θ ∈ C1(T1,T1), and
ϑ ∈ C1(T2,T2) are nondecreasing functions with θ (x) ≤ x on T1, ϑ(y) ≤ y on T2. Further-
more, suppose that ψ , ω ∈ C(R+,R+) are nondecreasing functions with {ψ ,ω}(u) > 0 for
u > 0, and limu→+∞ ψ(u) = +∞. If u(x, y) satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ(s, t)f (s, t)ω
(
u(s, t)

)∇t�s (2.1)

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1G
(
a(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ(s, t)f (s, t)∇t�s
}

(2.2)

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

G(v) =
∫ v

v0

�s
ω(ψ–1(s))

, v ≥ v0 > 0, G(+∞) =
∫ +∞

v0

�s
ω(ψ–1(s))

= +∞ (2.3)
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and (x1, y1) ∈ � is chosen so that

(
G

(
a(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
)

∈ Dom
(
G–1).

Proof First we assume that a(x, y) > 0. Fixing an arbitrary (x0, y0) ∈ �, we define a positive
and nondecreasing function z(x, y) by

z(x, y) = a(x0, y0) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ(s, t)f (s, t)ω
(
u(s, t)

)∇t�s (2.4)

for 0 ≤ x ≤ x0 ≤ x1, 0 ≤ y ≤ y0 ≤ y1, then z(x0, y) = z(x, y0) = a(x0, y0) and

u(x, y) ≤ ψ–1(z(x, y)
)
. (2.5)

Taking �-derivative for (2.4) with employing Theorem 1.5(i), we have

z�x (x, y) = θ�(x)
∫ ϑ(y)

y0

φ
(
θ (x), t

)
f
(
θ (x), t

)
ω

(
u
(
θ (x), t

))∇t

≤ θ�(x)
∫ ϑ(y)

y0

φ
(
θ (x), t

)
f
(
θ (x), t

)
ω

(
ψ–1(z

(
θ (x), t

)))∇t

≤ ω
(
ψ–1(z

(
θ (x),ϑ(y)

)))
θ�(x)

∫ ϑ(y)

y0

φ
(
θ (x), t

)
f
(
θ (x), t

)∇t. (2.6)

Inequality (2.6) can be written in the form

z�x (x, y)
ω(ψ–1(z(x, y)))

≤ θ�(x)
∫ ϑ(y)

y0

φ
(
θ (x), t

)
f
(
θ (x), t

)∇t. (2.7)

Taking �-integral for inequality (2.7) leads to

G
(
z(x, y)

) ≤ G
(
z(x0, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ(s, t)f (s, t)∇t�s

≤ G
(
a(x0, y0)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ(s, t)f (s, t)∇t�s.

Since (x0, y0) ∈ � is chosen arbitrarily,

z(x, y) ≤ G–1
[

G
(
a(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ(s, t)f (s, t)∇t�s
]

. (2.8)

From (2.8) and (2.5) we obtain the desired result (2.2). We carry out the above procedure
with ε > 0 instead of a(x, y) when a(x, y) = 0 and subsequently let ε → 0. �

Now, as special cases of our results, we will give the continuous, discrete, and quantum
inequalities. Namely, in the cases of time scales T = R, T = hZ, T = Z, and T = qZ.

Remark 2.2 If we take T = R, x0 = 0, and y0 = 0 in Lemma 2.1, then, by relation (1.1),
inequality (2.1) becomes the inequality obtained in [15, Lemma 2.1].
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Corollary 2.3 If we take T = hZ in Lemma 2.1 by relation (1.3), then the following inequal-
ity

ψ
(
u(x, y)

) ≤ a(x, y) + h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ(sh, th)f (sh, th)ω
(
u(sh, th)

)

for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1G
(
a(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ(sh, th)f (sh, th)

}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

G(v) =

v
h –1∑

s= v0
h

h
ω(ψ–1(sh))

, v ≥ v0 > 0, G(+∞) =
+∞∑

s= v0
h

h
ω(ψ–1(sh))

= +∞

and (x1, y1) ∈ � is chosen so that

(

G
(
a(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

)

∈ Dom
(
G–1).

Remark 2.4 In Corollary 2.3, if we take h = 1, then the following inequality

ψ
(
u(x, y)

) ≤ a(x, y) +
θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ(s, t)f (s, t)ω
(
u(s, t)

)

for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1G
(
a(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ(s, t)f (s, t)

}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

G(v) =
v–1∑

s=v0

1
ω(ψ–1(s))

, v ≥ v0 > 0, G(+∞) =
+∞∑

s=v0

1
ω(ψ–1(s))

= +∞

and (x1, y1) ∈ � is chosen so that

(

G
(
a(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)

)

∈ Dom
(
G–1).
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Corollary 2.5 If we take T = qZ in Lemma 2.1 by relation (1.4), then the following inequal-
ity

ψ
(
u(x, y)

) ≤ a(x, y) + (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ
(
qs, qt)f

(
qs, qt)ω

(
u
(
qs, qt))

for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1G
(
a(x, y)

)
+ (q – 1)2

(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ
(
qs, qt)f

(
qs, qt)

}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

G(v) =
(logq v)–1∑

s=(logq v0)

(q – 1)qs

ω(ψ–1(qs))
, v ≥ v0 > 0, G(+∞) =

+∞∑

s=(logq v0)

(q – 1)qs

ω(ψ–1(qs))
= +∞

and (x1, y1) ∈ � is chosen so that

(

G
(
a(x, y)

)
+ (q – 1)2

(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)

)

∈ Dom
(
G–1).

Theorem 2.6 Let u, a, f , θ , and ϑ be as in Lemma 2.1. Let φ1,φ2 ∈ C(�,R+). If u(x, y)
satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
u(s, t)

)

+
∫ s

x0

φ2(τ , t)ω
(
u(τ , t)

)
�τ

]
∇t�s (2.9)

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
(

p(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
)}

(2.10)

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G is defined by (2.3) and

p(x, y) = G
(
a(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s (2.11)

and (x1, y1) ∈ � is chosen so that

(
p(x, y) +

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
)

∈ Dom
(
G–1).

Proof By the same steps of the proof of Lemma 2.1, we can obtain (2.10) with suitable
changes. �
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Remark 2.7 If we take φ2(x, y) = 0, then Theorem 2.6 reduces to Lemma 2.1.

Corollary 2.8 Let the functions u, f , φ1, φ2, a, θ , and ϑ be as in Theorem 2.6. Further,
suppose that q > p > 0 are constants. If u(x, y) satisfies

uq(x, y) ≤ a(x, y) +
q

q – p

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)up(s, t)

+
∫ s

x0

φ2(τ , t)up(τ , t)�τ

]
∇t�s (2.12)

for (x, y) ∈ �, then

u(x, y) ≤
{

p(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
} 1

q–p
, (2.13)

where

p(x, y) =
(
a(x, y)

) q–p
q +

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s.

Proof In Theorem 2.6, by letting ψ(u) = uq, ω(u) = up, we have

G(v) =
∫ v

v0

�s
ω(ψ–1(s))

=
∫ v

v0

�s

s
p
q

≥ q
q – p

(
v

q–p
q – v

q–p
q

0
)
, v ≥ v0 > 0

and

G–1(v) ≥
{

v
q–p

q
0 +

q – p
q

v
} 1

q–p
.

We obtain inequality (2.13). �

Theorem 2.9 Under the hypotheses of Theorem 2.6, further, let ψ , ω, η ∈ C(R+,R+) be
nondecreasing functions with {ψ ,ω,η}(u) > 0 for u > 0, and limu→+∞ ψ(u) = +∞. If u(x, y)
satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
u(s, t)

)
η
(
u(s, t)

)

+
∫ s

x0

φ2(τ , t)ω
(
u(τ , t)

)
�τ

]
∇t�s (2.14)

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
(

F–1
[

F
(
p(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])}

(2.15)

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G and p are as in (2.3), (2.11) respectively and

F(v) =
∫ v

v0

�s
η(ψ–1(G–1(s)))

, v ≥ v0 > 0, F(+∞) = +∞, (2.16)
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and (x1, y1) ∈ � is chosen so that

[
F
(
p(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
]

∈ Dom
(
F–1).

Proof Assume that a(x, y) > 0. Fixing arbitrary (x0, y0) ∈ �, we define a positive and non-
decreasing function z(x, y) by

z(x, y) = a(x0, y0) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
u(s, t)

)
η
(
u(s, t)

)
(2.17)

+
∫ s

x0

φ2(τ , t)ω
(
u(τ , t)

)
�τ

]
∇t�s (2.18)

for 0 ≤ x ≤ x0 ≤ x1, 0 ≤ y ≤ y0 ≤ y1, then z(x0, y) = z(x, y0) = a(x0, y0) and

u(x, y) ≤ ψ–1(z(x, y)
)
. (2.19)

Taking �-derivative for (2.17) with employing Theorem 1.5(i) gives

z�x (x, y) = θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)
[

f
(
θ (x), t

)
ω

(
u
(
θ (x), t

))
η
(
u
(
θ (x), t

))
(2.20)

+
∫ θ (x)

x0

φ2(τ , t)ω
(
u(τ , t)

)
�τ

]
∇t (2.21)

≤ θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)
[

f
(
θ (x), t

)
ω

(
ψ–1(z

(
θ (x), t

)))
(2.22)

× η
(
ψ–1(z

(
θ (x), t

)))
+

∫ θ (x)

x0

φ2(τ , t)ω
(
ψ–1(z(τ , t)

))
�τ

]
∇t (2.23)

≤ θ�(x).ω
(
ψ–1(z

(
θ (x),ϑ(y)

)))
(2.24)

×
∫ ϑ(y)

y0

φ1
(
θ (x), t

)
[

f
(
θ (x), t

)
η
(
ψ–1(z

(
θ (x), t

)))
(2.25)

+
∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t. (2.26)

From (2.20) we have

z�x (x, y)
ω(ψ–1(z(x, y)))

≤ θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)[
f
(
θ (x), t

)
η
(
ψ–1(z

(
θ (x), t

)))
(2.27)

+
∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t. (2.28)

Taking �-integral for (2.27) gives

G
(
z(x, y)

) ≤ G
(
z(x0, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)η
(
ψ–1(z(s, t)

))

+
∫ s

x0

φ2(τ , t)�τ

]
∇t�s
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≤ G
(
a(x0, y0)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)η
(
ψ–1(z(s, t)

))

+
∫ s

x0

φ2(τ , t)�τ

]
∇t�s.

Since (x0, y0) ∈ � is chosen arbitrarily, the last inequality can be rewritten as

G
(
z(x, y)

) ≤ p(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)η
(
ψ–1(z(s, t)

))∇t�s. (2.29)

Since p(x, y) is a nondecreasing function, an application of Lemma 2.1 to (2.29) gives us

z(x, y) ≤ G–1
(

F–1
[

F
(
p(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])

. (2.30)

From (2.19) and (2.30) we obtain the desired inequality (2.15).
Now, we take the case a(x, y) = 0 for some (x, y) ∈ �. Let aε(x, y) = a(x, y) +ε for all (x, y) ∈

�, where ε > 0 is arbitrary, then aε(x, y) > 0 and aε(x, y) ∈ C(�,R+) are nondecreasing with
respect to (x, y) ∈ �. We carry out the above procedure with aε(x, y) > 0 instead of a(x, y),
and we get

u(x, y) ≤ ψ–1
{

G–1
(

F–1
[

F
(
pε(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])}

,

where

pε(x, y) = G
(
aε(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s.

Letting ε → 0+, we obtain (2.15). The proof is complete. �

Now, as special cases of our results, we will give the continuous, discrete, and quantum
inequalities. Namely, in the cases of time scales T = R, T = hZ, T = Z, and T = qZ.

Remark 2.10 If we take T = R, x0 = 0, and y0 = 0 in Theorem 2.9, then, by relation (1.1),
inequality (2.14) becomes the inequality obtained in [15, Theorem 2.2(A_2)].

Corollary 2.11 If we take T = hZ in Theorem 2.9 by relation (1.3), then the following in-
equality

ψ
(
u(x, y)

) ≤ a(x, y) + h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)

[

f (sh, th)ω
(
u(sh, th)

)
η
(
u(sh, th)

)

+ h

s
h –1∑

t= x0
h

φ2(τ , th)ω
(
u(τ , th)

)
]
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for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1

(

F–1

[

F
(
p(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G and p are as in (2.3) and (2.11), respectively, and

F(v) =

v
h∑

s= v0
h

h
η(ψ–1(G–1(sh)))

, v ≥ v0 > 0, F(+∞) = +∞

and (x1, y1) ∈ � is chosen so that

[

F
(
p(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

]

∈ Dom
(
F–1).

Remark 2.12 In Corollary 2.11, if we take h = 1, then the following inequality

ψ
(
u(x, y)

) ≤ a(x, y) +
θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)

[

f (s, t)ω
(
u(s, t)

)
η
(
u(s, t)

)

+
s–1∑

t=x0

φ2(τ , t)ω
(
u(τ , t)

)
]

for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1

(

F–1

[

F
(
p(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)s

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G and p are as in (2.3), and

F(v) =
v–1∑

s=v0

1
η(ψ–1(G–1(s)))

, v ≥ v0 > 0, F(+∞) = +∞,

and (x1, y1) ∈ � is chosen so that

[

F
(
p(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)

]

∈ Dom
(
F–1).

Corollary 2.13 If we take T = qZ in Theorem 2.9 by relation (1.4), then the following in-
equality

ψ
(
u(x, y)

) ≤ a(x, y) + (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)

×
[

f
(
qs, qt)ω

(
u
(
qs, qt))η

(
u
(
qs, qt))
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+ (q – 1)
(logq s)–1∑

t=(logq x0)

qtφ2
(
τ , qt)ω

(
u(τ , t)

)
]

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1

{

G–1

(

F–1

[

F
(
p(x, y)

)

+ (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)s

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where G and p are as in (2.3), and

F(v) =
(logq v)–1∑

s=(logq v0)

(q – 1)qs

η(ψ–1(G–1(qs)))
, v ≥ v0 > 0, F(+∞) = +∞,

and (x1, y1) ∈ � is chosen so that

[

F
(
p(x, y)

)
+ (q – 1)2

(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)

]

∈ Dom
(
F–1).

Corollary 2.14 Let the functions u, a, f , φ1, φ2, θ , and ϑ be as in Theorem 2.6. Further,
suppose that q, p, and r are constants with p > 0, r > 0, and q > p + r. If u(x, y) satisfies

uq(x, y) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)up(s, t)ur(s, t)

+
∫ s

x0

φ2(τ , t)up(τ , t)�τ

]
∇t�s (2.31)

for (x, y) ∈ �, then

u(x, y) ≤
{[

p(x, y)
] q–p–r

q–p +
q – p – r

q

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
} 1

q–p–r
, (2.32)

where

p(x, y) =
(
a(x, y)

) q–p
q +

q – p
q

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s.

Proof An application of Theorem 2.9 with ψ(u) = uq, ω(u) = up, and η(u) = ur yields the
desired inequality (2.32). �

Theorem 2.15 Under the hypotheses of Theorem 2.9. If u(x, y) satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
u(s, t)

)
η
(
u(s, t)

)

+
∫ s

x0

φ2(τ , t)ω
(
u(τ , t)

)
η
(
u(τ , t)

)
�τ

]
∇t�s (2.33)
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for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
(

F–1
[

p0(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])}

(2.34)

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

p0(x, y) = F
(
G

(
a(x, y)

))
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s,

and (x1, y1) ∈ � is chosen so that

[
p0(x, y) +

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
]

∈ Dom
(
F–1).

Proof Assume that a(x, y) > 0. Fixing arbitrary (x0, y0) ∈ �, we define a positive and non-
decreasing function z(x, y) by

z(x, y) = a(x0, y0) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
u(s, t)

)
η
(
u(s, t)

)

+
∫ s

x0

φ2(τ , t)ω
(
u(τ , t)

)
η
(
u(τ , t)

)
�τ

]
∇t�s

for 0 ≤ x ≤ x0 ≤ x1, 0 ≤ y ≤ y0 ≤ y1, then z(x0, y) = z(x, y0) = a(x0, y0), and

u(x, y) ≤ ψ–1(z(x, y)
)
. (2.35)

By the same steps as the proof of Theorem 2.9, we obtain

z(x, y) ≤ G–1
{

G
(
a(x0, y0)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)η
(
ψ–1(z(s, t)

))

+
∫ s

x0

φ2(τ , t)η
(
ψ–1(z(τ , t)

))
�τ

]
∇t�s

}
.

We define a nonnegative and nondecreasing function v(x, y) by

v(x, y) = G
(
a(x0, y0)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[
[
f (s, t)η

(
ψ–1(z(s, t)

))]

+
∫ s

x0

φ2(τ , t)η
(
ψ–1(z(τ , t)

))
�τ

]
∇t�s,

then v(x0, y) = v(x, y0) = G(a(x0, y0)),

z(x, y) ≤ G–1[v(x, y)
]
, (2.36)
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and then

v�x(x, y) ≤ θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)[
f
(
θ (x), t

)
η
(
ψ–1(G–1(v

(
θ (x), y

))))

+
∫ θ (x)

x0

φ2(τ , t)η
(
ψ–1(G–1(v(τ , y)

)))
�τ

]
∇t

≤ θ�(x)η
(
ψ–1(G–1(v

(
θ (x),ϑ(y)

))))∫ ϑ(y)

y0

φ1
(
θ (x), t

)[
f
(
θ (x), t

)

+
∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t

or

v�x(x, y)
η(ψ–1(G–1(v(x, y))))

≤ θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)[
f
(
θ (x), t

)
+

∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t.

Taking �-integral for the above inequality gives

F
(
v(x, y)

) ≤ F
(
v(x0, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t) +
∫ s

x0

φ2(τ , t)�τ

]
∇t�s

or

v(x, y) ≤ F–1
{

F
(
G

(
a(x0, y0)

))
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)

+
∫ s

x0

φ2(τ , t)�τ

]
∇t�s

}
. (2.37)

From (2.35)–(2.37), and since (x0, y0) ∈ � is chosen arbitrarily, we obtain the desired in-
equality (2.34). If a(x, y) = 0, we carry out the above procedure with ε > 0 instead of a(x, y)
and subsequently let ε → 0. The proof is complete. �

Now, as special cases of our results, we will give the continuous, discrete, and quantum
inequalities. Namely, in the cases of time scales T = R, T = hZ, T = Z, and T = qZ.

Remark 2.16 If we take T = R and x0 = 0 and y0 = 0 in Theorem 2.15, then, by relation
(1.1), inequality (2.33) becomes the inequality obtained in [15, Theorem 2.2(A3)].

Corollary 2.17 If we take T = hZ in Theorem 2.15 by relation (1.3), then the following
inequality

ψ
(
u(x, y)

) ≤ a(x, y) + h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)

[

f (sh, th)ω
(
u(sh, th)

)
η
(
u(sh, th)

)

+ h

s
h –1∑

t=x0

φ2(τ , th)ω
(
u(τ , th)

)
η
(
u(τ , th)

)
]
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for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1

(

F–1

[

p0(x, y) + h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

p0(x, y) = F
(
G

(
a(x, y)

))
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)

( s
h∑

t= x0
h

φ2(τ , th)

)

,

and (x1, y1) ∈ � is chosen so that

[

p0(x, y) + h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

]

∈ Dom
(
F–1).

Remark 2.18 In Corollary 2.17, if we take h = 1, then the following inequality

ψ
(
u(x, y)

) ≤ a(x, y) +
θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)

[

f (s, t)ω
(
u(s, t)

)
η
(
u(s, t)

)

+
s–1∑

s=x0

φ2(τ , t)ω
(
u(τ , t)

)
η
(
u(τ , t)

)
]

for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1

(

F–1

[

p0(x, y) +
θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

p0(x, y) = F
(
G

(
a(x, y)

))
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)

( s–1∑

t=x0

φ2(τ , t)

)

,

and (x1, y1) ∈ � is chosen so that

[

p0(x, y) +
θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)

]

∈ Dom
(
F–1).
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Corollary 2.19 If we take T = qZ in Theorem 2.15 by relation (1.4), then the following
inequality

ψ
(
u(x, y)

) ≤ a(x, y) + (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)

× φ1
(
qs, qt)

[

f
(
qs, qt)ω

(
u
(
qs, qt))η

(
u
(
qs, qt))

+ (q – 1)
(logq s)–1∑

s=(logq x0)

qtφ2
(
τ , qt)ω

(
u
(
τ , qt))η

(
u
(
τ , qt))

]

for (x, y) ∈ � implies

u(x, y) ≤ ψ–1

{

G–1

(

F–1

[

p0(x, y)

+ (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)

])}

for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1, where

p0(x, y) = F
(
G

(
a(x, y)

))
+(q–1)2

(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)

( (logq s)–1∑

t=(logq x0)

φ2
(
τ , qt)

)

and (x1, y1) ∈ � is chosen so that

[

p0(x, y) + (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)

]

∈ Dom
(
F–1).

Corollary 2.20 Under the hypotheses of Corollary 2.14. If u(x, y) satisfies

uq(x, y) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)up(s, t)ur(s, t)

+
∫ s

x0

φ2(τ , t)up(τ , t)ur(τ , t)�τ

]
∇t�s (2.38)

for (x, y) ∈ �, then

u(x, y) ≤
{

p0(x, y) +
q – p – r

q

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
} 1

q–p–r
, (2.39)

where

p0(x, y) =
(
a(x, y)

) q–p–r
q +

q – p – r
q

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s.
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Proof An application of Theorem 2.15 with ψ(u) = uq, ω(u) = up, and η(u) = ur yields the
desired inequality (2.39). �

Theorem 2.21 Under the hypotheses of Theorem 2.9. If u(x, y) satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)η
(
u(s, t)

)

×
[

f (s, t)ω
(
u(s, t)

)
+

∫ s

x0

φ2(τ , t)�τ

]
∇t�s (2.40)

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
1

(
F–1

1

[
F1

(
p1(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])}

(2.41)

for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2, where

G1(v) =
∫ v

v0

�s
η(ψ–1(s))

, v ≥ v0 > 0, G1(+∞) =
∫ +∞

v0

�s
η(ψ–1(s))

= +∞

F1(v) =
∫ v

v0

�s
ω[ψ–1(G–1

1 (s))]
, v ≥ v0 > 0, F1(+∞) = +∞

p1(x, y) = G1
(
a(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s,

and (x2, y2) ∈ � is chosen so that

[
F1

(
p1(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
]

∈ Dom
(
F–1

1
)
.

Proof Suppose that a(x, y) > 0. Fixing an arbitrary (x0, y0) ∈ �, we define a positive and
nondecreasing function z(x, y) by

z(x, y) = a(x0, y0) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)η
(
u(s, t)

)
[

f (s, t)ω
(
u(s, t)

)

+
∫ s

x0

φ2(τ , t)�τ

]
∇t�s

for 0 ≤ x ≤ x0 ≤ x2, 0 ≤ y ≤ y0 ≤ y2, then z(x0, y) = z(x, y0) = a(x0, y0),

u(x, y) ≤ ψ–1(z(x, y)
)

(2.42)

and

z�x (x, y) ≤ θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)
η
[
ψ–1(z

(
θ (x), t

))]
[

f
(
θ (x), t

)
ω

(
ψ–1(z

(
θ (x), t

)))

+
∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t
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≤ θ�(x)η
[
ψ–1(z

(
θ (x),ϑ(y)

))]∫ ϑ(y)

y0

φ1
(
θ (x), t

)
[

f
(
θ (x), t

)
ω

(
ψ–1(z

(
θ (x), t

)))

+
∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t,

then

z�x (x, y)
η[ψ–1(z(x, y))]

≤ θ�(x)
∫ ϑ(y)

y0

φ1
(
θ (x), t

)[
f
(
θ (x), t

)
ω

(
ψ–1(z

(
θ (x), t

)))

+
∫ θ (x)

x0

φ2(τ , t)�τ

]
∇t.

Taking �-integral for the above inequality gives

G1
(
z(x, y)

) ≤ G1
(
z(0, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
ψ–1(z(s, t)

))

+
∫ s

x0

φ2(τ , t)�τ

]
∇t�s,

then

G1
(
z(x, y)

) ≤ G1
(
a(x0, y0)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
[

f (s, t)ω
(
ψ–1(z(s, t)

))

+
∫ s

x0

φ2(τ , t)�τ

]
∇t�s.

Since (x0, y0) ∈ � is chosen arbitrarily, the last inequality can be restated as

G1
(
z(x, y)

) ≤ p1(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)ω
(
ψ–1(z(s, t)

))∇t�s. (2.43)

It is easy to observe that p1(x, y) is a positive and nondecreasing function for all (x, y) ∈ �,
then an application of Lemma 2.1 to (2.43) yields the inequality

z(x, y) ≤ G–1
1

(
F–1

1

[
F1

(
p1(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])

. (2.44)

From (2.44) and (2.42) we get the desired inequality (2.41).
If a(x, y) = 0, we carry out the above procedure with ε > 0 instead of a(x, y) and subse-

quently let ε → 0. The proof is complete. �

Now, as special cases of our results, we will give the continuous, discrete, and quantum
inequalities. Namely, in the cases of time scales T = R, T = hZ, T = Z, and T = qZ.

Remark 2.22 If we take T = R and x0 = 0 and y0 = 0 in Theorem 2.21, then, by relation
(1.1), inequality (2.41) becomes the inequality obtained in [15, Theorem 2.7].
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Corollary 2.23 If we take T = hZ in Theorem 2.15 by relation (1.3), then the following
inequality

ψ
(
u(x, y)

) ≤ a(x, y) + h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)η
(
u(sh, th)

)

×
[

f (sh, th)ω
(
u(sh, th)

)
+

s
h –1∑

t= x0
h

φ2(τ , th)

]

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1

{

G–1
1

(

F–1
1

[

F1
(
p1(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

])}

for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2, where

G1(v) =

v
h –1∑

s= v0
h

h
η(ψ–1(sh))

, v ≥ v0 > 0, G1(+∞) =
+∞∑

s= v0
h

h
η(ψ–1(sh))

= +∞

F1(v) =

v
h –1∑

s= v0
h

h
ω[ψ–1(G–1

1 (sh))]
, v ≥ v0 > 0, F1(+∞) = +∞

p1(x, y) = G1
(
a(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)

(

h

s
h –1∑

t= x0
h

φ2(τ , th)

)

,

and (x2, y2) ∈ � is chosen so that

[

F1
(
p1(x, y)

)
+ h2

θ (x)
h –1∑

s= x0
h

ϑ(y)
h +1∑

t= y0
h

φ1(sh, th)f (sh, th)

]

∈ Dom
(
F–1

1
)
.

Corollary 2.24 In Corollary 2.23, if we take h = 1, then the following inequality

ψ
(
u(x, y)

) ≤ a(x, y) +
θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)η
(
u(s, t)

)

×
[

f (s, t)ω
(
u(s, t)

)
+

s–1∑

t=x0

φ2(τ , t)

]

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1

{

G–1
1

(

F–1
1

[

F1
(
p1(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)

])}
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for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2, where

G1(v) =
v–1∑

s=v0

1
η(ψ–1(s))

, v ≥ v0 > 0, G1(+∞) =
+∞∑

s=v0

1
η(ψ–1(s))

= +∞,

F1(v) =
v–1∑

s=v0

1
ω[ψ–1(G–1

1 (s))]
, v ≥ v0 > 0, F1(+∞) = +∞,

p1(x, y) = G1
(
a(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)

( s–1∑

t=x0

φ2(τ , t)

)

and (x2, y2) ∈ � is chosen so that

[

F1
(
p1(x, y)

)
+

θ (x)–1∑

s=x0

ϑ(y)+1∑

t=y0

φ1(s, t)f (s, t)

]

∈ Dom
(
F–1

1
)
.

Corollary 2.25 If we take T = qZ in Theorem 2.21 by relation (1.4), then the following
inequality

ψ
(
u(x, y)

) ≤ a(x, y) + (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)η

(
u
(
qs, qt))

×
[

f
(
qs, qt)ω

(
u
(
qs, qt)) + (q – 1)

(logq s)–1∑

t=(logq x0)

qtφ2
(
τ , qt)

]

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1

{

G–1
1

(

F–1
1

[

F1
(
p1(x, y)

)

+ (q – 1)2
(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)

])}

for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2, where

G1(v) =
(logq v)–1∑

s=(logq v0)

(q – 1)qs

η(ψ–1(qs))
, v ≥ v0 > 0,

G(q–1)qs (+∞) =
+∞∑

s=(logq v0)

(q – 1)qs

η(ψ–1(qs))
= +∞,

F1(v) =
(logq v)–1∑

s=(logq v0)

(q – 1)qs

ω[ψ–1(G–1
1 (qs))]

, v ≥ v0 > 0, F1(+∞) = +∞,

p1(x, y) = G1
(
a(x, y)

)
+ (q – 1)2

(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)

( s–1∑

t=x0

φ2
(
τ , qt)

)
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and (x2, y2) ∈ � is chosen so that

[

F1
(
p1(x, y)

)
+ (q – 1)2

(logq θ (x))–1∑

s=(logq x0)

(logq ϑ(y))+1∑

t=(logq y0)

q(s+t)φ1
(
qs, qt)f

(
qs, qt)

]

∈ Dom
(
F–1

1
)
.

Theorem 2.26 Under the hypotheses of Theorem 2.9, and let p be a nonnegative constant.
If u(x, y) satisfies

ψ
(
u(x, y)

) ≤ a(x, y) +
∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)up(s, t)

×
[

f (s, t)ω
(
u(s, t)

)
+

∫ s

x0

φ2(τ , t)�τ

]
∇t�s (2.45)

for (x, y) ∈ �, then

u(x, y) ≤ ψ–1
{

G–1
1

(
F–1

1

[
F1

(
p1(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
])}

(2.46)

for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2, where

G1(v) =
∫ v

v0

�s
[ψ–1(s)]p , v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

�s
[ψ–1(s)]p = +∞, (2.47)

and F1, p1 are as in Theorem 2.21 and (x2, y2) ∈ � is chosen so that

[
F1

(
p1(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
]

∈ Dom
(
F–1

1
)
.

Proof An application of Theorem 2.21 with η(u) = up yields the desired inequality
(2.46). �

Remark 2.27 Taking T = R. The inequality established in Theorem 2.26 generalizes [38,
Theorem 1] (with p = 1, a(x, y) = b(x) + c(y), x0 = 0, y0 = 0, φ1(s, t)f (s, t) = h(s, t), and
φ1(s, t)(

∫ s
x0

φ2(τ , t)�τ ) = g(s, t)).

Corollary 2.28 Under the hypotheses of Theorem 2.26, and let q > p > 0 be constants. If
u(x, y) satisfies

uq(x, y) ≤ a(x, y) +
p

p – q

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)up(s, t)

×
[

f (s, t)ω
(
u(s, t)

)
+

∫ s

x0

φ2(τ , t)�τ

]
∇t�s (2.48)

for (x, y) ∈ �, then

u(x, y) ≤
{

F–1
1

[
F1

(
p1(x, y)

)
+

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)f (s, t)∇t�s
]} 1

q–p
(2.49)
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for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2, where

p1(x, y) =
[
a(x, y)

] q–p
q +

∫ θ (x)

x0

∫ ϑ(y)

y0

φ1(s, t)
(∫ s

x0

φ2(τ , t)�τ

)
∇t�s

and F1 is defined in Theorem 2.21.

Proof An application of Theorem 2.26 with ψ(u(x, y)) = up to (2.48) yields inequality
(2.49); to save space, we omit the details. �

Remark 2.29 Taking T = R, x0 = 0, y0 = 0, a(x, y) = b(x) + c(y), φ1(s, t)f (s, t) = h(s, t), and
φ1(s, t)(

∫ s
x0

φ2(τ , t)�τ ) = g(s, t) in Corollary 2.28, we obtain [39, Theorem 1].

Remark 2.30 Taking T = R, x0 = 0, y0 = 0, a(x, y) = c
p

p–q , φ1(s, t)f (s, t) = h(t), and φ1(s,
t)(

∫ s
x0

φ2(τ , t)�τ ) = g(t) and keeping y fixed in Corollary 2.28, we obtain [25, Theorem
2.1].

3 Application
In what follows, we discus the boundedness of the solutions of the initial boundary value
problem for partial delay dynamic equation of the form

(
zq)�x∇y (x, y) = A

(
x, y, z

(
x – h1(x), y – h2(y)

)
,
∫ x

x0

B
(
s, y, z

(
s – h1(s), y

))
�s

)
,

z(x, y0) = a1(x), z(x0, y) = a2(y), a1(x0) = ay0 (0) = 0
(3.1)

for (x, y) ∈ �, where z, b ∈ C(�,R+), A ∈ C(� × R2, R), B ∈ C(� × R, R), and h1 ∈
C1(T1,R+), h2 ∈ C1(T2,R+) are nondecreasing functions such that h1(x) ≤ x on T1, h2(y) ≤
y on T2, and h�

1 (x) < 1, h�
2 (y) < 1.

Theorem 3.1 Assume that the functions a1, a2, A, B in (3.1) satisfy the conditions

∣∣a1(x) + a2(y)
∣∣ ≤ a(x, y) (3.2)

∣
∣A(s, t, z, u)

∣
∣ ≤ q

q – p
φ1(s, t)

[
f (s, t)|z|p + |u|] (3.3)

∣
∣B(τ , t, z)

∣
∣ ≤ φ2(τ , t)|z|p, (3.4)

where a(x, y), φ1(s, t), f (s, t), and φ2(τ , t) are as in Theorem 2.6, q > p > 0 are constants. If
z(x, y) satisfies (3.1), then

∣
∣z(x, y)

∣
∣ ≤

{
p(x, y) + M1M2

∫ θ (x)

x0

∫ ϑ(y)

y0

–
φ1(s, t)

–
f (s, t)∇t�s

} 1
q–p

, (3.5)

where

p(x, y) =
(
a(x, y)

) q–p
q

+ M1M2

∫ θ (x)

x0

∫ ϑ(y)

y0

–
φ1(s, t)

(
M1

∫ s

x0

–
φ2(τ , t)�τ

)
∇t�s
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and

M1 = Max
x∈I1

1
1 – h�

1 (x)
, M2 = Max

y∈I2

1
1 – h�

2 (y)

and
–
φ1(γ , ξ ) = φ1(γ + h1(s), ξ + h2(t)),

–
φ2(μ, ξ ) = φ2(μ, ξ + h2(t)),

–
f (γ , ξ ) = f (γ + h1(s), ξ +

h2(t)).

Proof If z(x, y) is any solution of (3.1), then

zq(x, y) = a1(x) + a2(y)

+
∫ x

x0

∫ y

y0

A
(

s, t, z
(
s – h1(s), t – h2(t)

)
,

∫ s

x0

B
(
τ , t, z

(
τ – h1(τ ), t

))
�τ

)
∇t�s. (3.6)

Using conditions (3.2)–(3.4) in (3.6), we obtain

∣∣z(x, y)
∣∣q ≤ a(x, y) +

q – p
q

∫ x

x0

∫ y

y0

φ1(s, t)
[

f (s, t)
∣∣z

(
s – h1(s), t – h2(t)

)∣∣p

+
∫ s

x0

φ2(τ , t)
∣∣z(τ , t)

∣∣p
�τ

]
∇t�s. (3.7)

Now, making a change of variables on the right-hand side of (3.7), s–h1(s) = γ , t –h2(t) = ξ ,
x – h1(x) = θ (x) for x ∈ T1, y – h2(y) = ϑ(y) for y ∈ T2, we obtain the inequality

∣∣z(x, y)
∣∣q ≤ a(x, y) +

q – p
q

M1M2

∫ θ (x)

x0

∫ ϑ(y)

y0

–
φ1(γ , ξ )

[
–
f (γ , ξ )

∣∣z(γ , ξ )
∣∣p

+ M1

∫ γ

x0

–
φ2(μ, ξ )

∣∣z(μ, t)
∣∣p

�μ

]
∇ξ�γ . (3.8)

We can rewrite inequality (3.8) as follows:

∣∣z(x, y)
∣∣q ≤ a(x, y) +

q – p
q

M1M2

∫ θ (x)

x0

∫ ϑ(y)

y0

–
φ1(s, t)

[
–
f (s, t)

∣∣z(s, t)
∣∣p

+ M1

∫ s

x0

–
φ2(τ , t)

∣∣z(τ , t)
∣∣p

�τ

]
∇t�s. (3.9)

As an application of Corollary 2.8 to (3.9) with u(x, y) = |z(x, y)|, we obtain the desired
inequality (3.5). The proof is complete. �

4 Conclusion
In this article, we explored new generalizations of the integral retarded inequality given in
[15] by the utilization of the integral rule on time scales. We generalized a number of those
inequalities to a general time scale. Besides that, in order to obtain some new inequalities
as special cases, we also extended our inequalities to discrete, quantum, and continuous
calculus. Also, we studied the qualitative properties of solutions of some types of dynamic
equations on time scales.
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