On dynamic inequalities in two independent variables on time scales and their applications for boundary value problems

Ahmed A. El-Deeb ${ }^{1 *}$

*Correspondence:
ahmedeldeeb@azhar.edu.eg ${ }^{1}$ Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract

Our work is based on the multiple inequalities illustrated by Boudeliou and Khalaf in 2015. With the help of the Leibniz integral rule on time scales, we generalize a number of those inequalities to a general time scale. Besides that, in order to obtain some new inequalities as special cases, we also extend our inequalities to discrete, quantum, and continuous calculus. These inequalities may be of use in the analysis of some kinds of partial dynamic equations on time scales and their applications in environmental phenomena, physical and engineering sciences described by partial differential equations.

MSC: 26D10; 26D15; 34N05; 26E70
Keywords: Dynamic equations; Time scales; Integral inequalities; Pachpatte inequalities; Dynamic inequality

1 Introduction

In 2015, Boudeliou and Khalaf [15] proved the following inequalities.

Theorem 1.1 Let $u, f, \phi \in C\left(\Omega, \mathbb{R}_{+}\right)$and $a \in C\left(\Omega, \mathbb{R}_{+}\right)$be nondecreasing with respect to $(x, y) \in I_{1} \times I_{2} ;$ let $\theta \in C^{1}\left(I_{1}, I_{1}\right), \vartheta \in C^{1}\left(I_{2}, I_{2}\right)$ be nondecreasing with $\theta(x) \leq x$ on $I_{1}, \vartheta(y) \leq y$ on I_{2}. Let $\phi_{1}, \phi_{2} \in C\left(\Omega, \mathbb{R}_{+}\right)$. Further, let $\psi, \omega, \eta \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$be nondecreasing functions with $\{\psi, \omega, \eta\}(u)>0$ for $u>0$, and $\lim _{u \rightarrow+\infty} \psi(u)=+\infty$.
$\left(A_{1}\right)$ If u satisfies

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \\
& \left.+\int_{0}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) d \tau\right] d t d s
\end{aligned}
$$

for $(x, y) \in \Omega$, then

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(p(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) d t d s\right)\right\}
$$

[^0]for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G is defined by (2.3) and
$$
p(x, y)=G(a(x, y))+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{0}^{s} \phi_{2}(\tau, t) d \tau\right) d t d s
$$
and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that $\left(p(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) d t d s\right) \in \operatorname{Dom}\left(G^{-1}\right)$.
$\left(A_{2}\right)$ If $u(x, y)$ satisfies
\[

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\int_{0}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) d \tau\right] d t d s
\end{aligned}
$$
\]

for $(x, y) \in \Omega$, then

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[F(p(x, y))+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) d t d s\right]\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G and p are as in $\left(A_{1}\right)$, and

$$
F(v)=\int_{v_{0}}^{v} \frac{d s}{\eta\left(\psi^{-1}\left(G^{-1}(s)\right)\right)}, \quad v \geq v_{0}>0, \quad F(+\infty)=+\infty
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that $\left[F(p(x, y))+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) d t d s\right] \in \operatorname{Dom}\left(F^{-1}\right)$.
$\left(A_{3}\right)$ If $u(x, y)$ satisfies

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\int_{0}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) \eta(u(\tau, t)) d \tau\right] d t d s
\end{aligned}
$$

for $(x, y) \in \Omega$, then

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[p_{0}(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) d t d s\right]\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
p_{0}(x, y)=F(G(a(x, y)))+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{0}^{s} \phi_{2}(\tau, t) d \tau\right) d t d s
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that $\left[p_{0}(x, y)+\int_{0}^{\theta(x)} \int_{0}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) d t d s\right] \in \operatorname{Dom}\left(F^{-1}\right)$.
Hilger in his PhD thesis [26] was the first to accomplish the unification and extension of differential equations, difference equations, q-difference equations, and so on to the encompassing theory of dynamic equations on time scales.
Throughout this work a knowledge and understanding of time scales and time-scale notation is assumed; for an excellent introduction to the calculus on time scales, see Bohner and Peterson [11, 13].

Over several decades Gronwall-Bellman-type inequalities, which have many applications in stability and oscillation theory, have attracted many researchers, and several refinements and extensions have been done to the previous results. For example, Yuzhen Mi [32] applied his results to study a boundary value problem of differential equations with impulsive terms. Also, we refer the reader to the works [1, 3, 4, 8, 18-20, 24, 34, 35, 40], see also $[2,5-7,9,10,16,17,22,27-30,33,36,37]$.
Before we arrive at the main results in the next section, we need the following theorems and essential relations on some time scales such as $\mathbb{R}, \mathbb{Z}, h \mathbb{Z}$ and $\overline{q^{\mathbb{Z}}}$. Note that:
(i) If $\mathbb{T}=\mathbb{R}$, then

$$
\begin{equation*}
\sigma(t)=t, \quad \mu(t)=0, \quad \psi^{\Delta}(t)=\psi^{\prime}(t), \quad \int_{a}^{b} \psi(t) \Delta t=\int_{a}^{b} \psi(t) d t \tag{1.1}
\end{equation*}
$$

(ii) If $\mathbb{T}=\mathbb{Z}$, then

$$
\begin{align*}
& \sigma(t)=t+1, \quad \mu(t)=1, \quad \psi^{\Delta}(t)=\psi(t+1)-\psi(t), \\
& \int_{a}^{b} \psi(t) \Delta t=\sum_{t=a}^{b-1} \psi(t) . \tag{1.2}
\end{align*}
$$

(iii) If $\mathbb{T}=h \mathbb{Z}$, then

$$
\begin{align*}
& \sigma(t)=t+h, \quad \mu(t)=h, \quad \psi^{\Delta}(t)=\frac{\psi(t+h)-\psi(t)}{h}, \\
& \int_{a}^{b} \psi(t) \Delta t=\sum_{t=\frac{a}{h}}^{\frac{b}{h}-1} \psi(t h) h . \tag{1.3}
\end{align*}
$$

(iv) If $\mathbb{T}=\overline{q^{\mathbb{Z}}}$, then

$$
\begin{align*}
& \sigma(t)=q t, \quad \mu(t)=(q-1) t, \quad \psi^{\Delta}(t)=\frac{\psi(q t)-\psi(t)}{(q-1) t}, \\
& \int_{a}^{b} \psi(t) \Delta t=(q-1) \sum_{t=\left(\log _{q} a\right)}^{\left(\log _{q} b\right)-1} \psi\left(q^{t}\right) q^{t} . \tag{1.4}
\end{align*}
$$

Theorem 1.2 Iff is Δ-integrable on $[a, b]$, then so is $|f|$, and

$$
\left|\int_{a}^{b} f(t) \Delta t\right| \leq \int_{a}^{b}|f(t)| \Delta t .
$$

Theorem 1.3 (Chain rule on time scales [12]) Assume that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, g : $\mathbb{T} \rightarrow \mathbb{R}$ is Δ-differentiable on \mathbb{T}^{κ}, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable. Then there exists $c \in[t, \sigma(t)]_{\mathbb{R}}$ with

$$
\begin{equation*}
(f \circ g)^{\Delta}(t)=f^{\prime}(g(c)) g^{\Delta}(t) \tag{1.5}
\end{equation*}
$$

Theorem 1.4 (see [14]) Let $t_{0} \in \mathbb{T}^{\kappa}$ and $k: \mathbb{T} \times \mathbb{T}^{\kappa} \rightarrow \mathbb{R}$ be continuous at (t, t), where $t>t_{0}$ and $t \in \mathbb{T}^{\kappa}$. Assume that $k^{\Delta}(t, \cdot)$ is rd-continuous on $\left[t_{0}, \sigma(t)\right]$. Iffor any $\varepsilon>0$ there exists a
neighborhood U oft, independent of $\tau \in\left[t_{0}, \sigma(t)\right]$, such that

$$
\left|[k(\sigma(t), \tau)-k(s, \tau)]-k^{\Delta}(t, \tau)[\sigma(t)-s]\right| \leq \varepsilon|\sigma(t)-s|, \quad \forall s \in U .
$$

If k^{Δ} denotes the derivative of k with respect to the first variable, then

$$
f(t)=\int_{t_{0}}^{t} k(t, \tau) \Delta \tau
$$

yields

$$
f^{\Delta}(t)=\int_{t_{0}}^{t} k^{\Delta}(t, \tau) \Delta \tau+k(\sigma(t), t) .
$$

Theorem 1.5 ([21, Leibniz rule on time scales]) In the following, by $f^{\Delta}(t, s)$ we mean the delta derivative of $f(t, s)$ with respect to t. Similarly, $f^{\nabla}(t, s)$ is understood. If f, f^{Δ}, and f^{∇} are continuous and $u, h: \mathbb{T} \rightarrow \mathbb{T}$ are delta differentiable functions, then the following formulas hold $\forall t \in \mathbb{T}^{\kappa}$:
(i) $\left[\int_{u(t)}^{h(t)} f(t, s) \Delta s\right]^{\Delta}=\int_{u(t)}^{h(t)} f^{\Delta}(t, s) \Delta s+h^{\Delta}(t) f(\sigma(t), h(t))-u^{\Delta}(t) f(\sigma(t), u(t))$;
(ii) $\left[\int_{u(t)}^{h(t)} f(t, s) \Delta s\right]^{\nabla}=\int_{u(t)}^{h(t)} f^{\nabla}(t, s) \Delta s+h^{\nabla}(t) f(\rho(t), h(t))-u^{\nabla}(t) f(\rho(t), u(t))$;
(iii) $\left[\int_{u(t)}^{h(t)} f(t, s) \nabla s\right]^{\Delta}=\int_{u(t)}^{h(t)} f^{\Delta}(t, s) \nabla s+h^{\Delta}(t) f(\sigma(t), h(t))-u^{\Delta}(t) f(\sigma(t), u(t))$;
(iv) $\left[\int_{u(t)}^{h(t)} f(t, s) \nabla s\right]^{\nabla}=\int_{u(t)}^{h(t)} f^{\nabla}(t, s) \nabla s+h^{\nabla}(t) f(\rho(t), h(t))-u^{\nabla}(t) f(\rho(t), u(t))$.

In this manuscript, by applying Theorem 1.5, we discuss the retarded time scale case of the inequalities obtained in [15]. Furthermore, these inequalities that are proved here extend some known results in $[23,31,38]$ and also unify the continuous, the discrete, and the quantum cases.

2 Main results

Lemma 2.1 Suppose that $\mathbb{T}_{1}, \mathbb{T}_{2}$ are two times scales and $a \in C\left(\Omega=\mathbb{T}_{1} \times \mathbb{T}_{2}, \mathbb{R}_{+}\right)$is nondecreasing with respect to $(x, y) \in \Omega$. Assume that $\phi, u, f \in C\left(\Omega, \mathbb{R}_{+}\right), \theta \in C^{1}\left(\mathbb{T}_{1}, \mathbb{T}_{1}\right)$, and $\vartheta \in C^{1}\left(\mathbb{T}_{2}, \mathbb{T}_{2}\right)$ are nondecreasing functions with $\theta(x) \leq x$ on $\mathbb{T}_{1}, \vartheta(y) \leq y$ on \mathbb{T}_{2}. Furthermore, suppose that $\psi, \omega \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$are nondecreasing functions with $\{\psi, \omega\}(u)>0$ for $u>0$, and $\lim _{u \rightarrow+\infty} \psi(u)=+\infty$. If $u(x, y)$ satisfies

$$
\begin{equation*}
\psi(u(x, y)) \leq a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi(s, t) f(s, t) \omega(u(s, t)) \nabla t \Delta s \tag{2.1}
\end{equation*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}\left\{G^{-1} G(a(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi(s, t) f(s, t) \nabla t \Delta s\right\} \tag{2.2}
\end{equation*}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
\begin{equation*}
G(v)=\int_{v_{0}}^{v} \frac{\Delta s}{\omega\left(\psi^{-1}(s)\right)}, \quad v \geq v_{0}>0, \quad G(+\infty)=\int_{v_{0}}^{+\infty} \frac{\Delta s}{\omega\left(\psi^{-1}(s)\right)}=+\infty \tag{2.3}
\end{equation*}
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left(G(a(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right) \in \operatorname{Dom}\left(G^{-1}\right) .
$$

Proof First we assume that $a(x, y)>0$. Fixing an arbitrary $\left(x_{0}, y_{0}\right) \in \Omega$, we define a positive and nondecreasing function $z(x, y)$ by

$$
\begin{equation*}
z(x, y)=a\left(x_{0}, y_{0}\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi(s, t) f(s, t) \omega(u(s, t)) \nabla t \Delta s \tag{2.4}
\end{equation*}
$$

for $0 \leq x \leq x_{0} \leq x_{1}, 0 \leq y \leq y_{0} \leq y_{1}$, then $z\left(x_{0}, y\right)=z\left(x, y_{0}\right)=a\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}(z(x, y)) . \tag{2.5}
\end{equation*}
$$

Taking Δ-derivative for (2.4) with employing Theorem $1.5(i)$, we have

$$
\begin{align*}
z^{\Delta_{x}}(x, y) & =\theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi(\theta(x), t) f(\theta(x), t) \omega(u(\theta(x), t)) \nabla t \\
& \leq \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi(\theta(x), t) f(\theta(x), t) \omega\left(\psi^{-1}(z(\theta(x), t))\right) \nabla t \\
& \leq \omega\left(\psi^{-1}(z(\theta(x), \vartheta(y)))\right) \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi(\theta(x), t) f(\theta(x), t) \nabla t . \tag{2.6}
\end{align*}
$$

Inequality (2.6) can be written in the form

$$
\begin{equation*}
\frac{z^{\Delta_{x}}(x, y)}{\omega\left(\psi^{-1}(z(x, y))\right)} \leq \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi(\theta(x), t) f(\theta(x), t) \nabla t . \tag{2.7}
\end{equation*}
$$

Taking Δ-integral for inequality (2.7) leads to

$$
\begin{aligned}
G(z(x, y)) & \leq G\left(z\left(x_{0}, y\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi(s, t) f(s, t) \nabla t \Delta s \\
& \leq G\left(a\left(x_{0}, y_{0}\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi(s, t) f(s, t) \nabla t \Delta s .
\end{aligned}
$$

Since $\left(x_{0}, y_{0}\right) \in \Omega$ is chosen arbitrarily,

$$
\begin{equation*}
z(x, y) \leq G^{-1}\left[G(a(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi(s, t) f(s, t) \nabla t \Delta s\right] . \tag{2.8}
\end{equation*}
$$

From (2.8) and (2.5) we obtain the desired result (2.2). We carry out the above procedure with $\epsilon>0$ instead of $a(x, y)$ when $a(x, y)=0$ and subsequently let $\epsilon \rightarrow 0$.

Now, as special cases of our results, we will give the continuous, discrete, and quantum inequalities. Namely, in the cases of time scales $\mathbb{T}=\mathbb{R}, \mathbb{T}=h \mathbb{Z}, \mathbb{T}=\mathbb{Z}$, and $\mathbb{T}=\overline{q^{\mathbb{Z}}}$.

Remark 2.2 If we take $\mathbb{T}=\mathbb{R}, x_{0}=0$, and $y_{0}=0$ in Lemma 2.1, then, by relation (1.1), inequality (2.1) becomes the inequality obtained in [15, Lemma 2.1].

Corollary 2.3 If we take $\mathbb{T}=h \mathbb{Z}$ in Lemma 2.1 by relation (1.3), then the following inequality

$$
\psi(u(x, y)) \leq a(x, y)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi(s h, t h) f(s h, t h) \omega(u(s h, t h))
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1} G(a(x, y))+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi(s h, t h) f(s h, t h)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
G(v)=\sum_{s=\frac{v_{0}}{h}}^{\frac{v}{h}-1} \frac{h}{\omega\left(\psi^{-1}(s h)\right)}, \quad v \geq v_{0}>0, \quad G(+\infty)=\sum_{s=\frac{v_{0}}{h}}^{+\infty} \frac{h}{\omega\left(\psi^{-1}(s h)\right)}=+\infty
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left(G(a(x, y))+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right) \in \operatorname{Dom}\left(G^{-1}\right) .
$$

Remark 2.4 In Corollary 2.3, if we take $h=1$, then the following inequality

$$
\psi(u(x, y)) \leq a(x, y)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi(s, t) f(s, t) \omega(u(s, t))
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1} G(a(x, y))+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi(s, t) f(s, t)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
G(v)=\sum_{s=v_{0}}^{v-1} \frac{1}{\omega\left(\psi^{-1}(s)\right)}, \quad v \geq v_{0}>0, \quad G(+\infty)=\sum_{s=v_{0}}^{+\infty} \frac{1}{\omega\left(\psi^{-1}(s)\right)}=+\infty
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left(G(a(x, y))+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t)\right) \in \operatorname{Dom}\left(G^{-1}\right) .
$$

Corollary 2.5 If we take $\mathbb{T}=\overline{q^{\mathbb{Z}}}$ in Lemma 2.1 by relation (1.4), then the following inequality

$$
\psi(u(x, y)) \leq a(x, y)+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right) \omega\left(u\left(q^{s}, q^{t}\right)\right)
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1} G(a(x, y))+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
G(v)=\sum_{s=\left(\log _{q} v_{0}\right)}^{\left(\log _{q} v\right)-1} \frac{(q-1) q^{s}}{\omega\left(\psi^{-1}\left(q^{s}\right)\right)}, \quad v \geq v_{0}>0, \quad G(+\infty)=\sum_{s=\left(\log _{q} v_{0}\right)}^{+\infty} \frac{(q-1) q^{s}}{\omega\left(\psi^{-1}\left(q^{s}\right)\right)}=+\infty
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left(G(a(x, y))+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right) \in \operatorname{Dom}\left(G^{-1}\right)
$$

Theorem 2.6 Let u, a, f, θ, and ϑ be as in Lemma 2.1. Let $\phi_{1}, \phi_{2} \in C\left(\Omega, \mathbb{R}_{+}\right)$. If $u(x, y)$ satisfies

$$
\begin{align*}
\psi(u(x, y)) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) \Delta \tau\right] \nabla t \Delta s \tag{2.9}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(p(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right)\right\} \tag{2.10}
\end{equation*}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G is defined by (2.3) and

$$
\begin{equation*}
p(x, y)=G(a(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s \tag{2.11}
\end{equation*}
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left(p(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right) \in \operatorname{Dom}\left(G^{-1}\right) .
$$

Proof By the same steps of the proof of Lemma 2.1, we can obtain (2.10) with suitable changes.

Remark 2.7 If we take $\phi_{2}(x, y)=0$, then Theorem 2.6 reduces to Lemma 2.1.

Corollary 2.8 Let the functions $u, f, \phi_{1}, \phi_{2}, a, \theta$, and ϑ be as in Theorem 2.6. Further, suppose that $q>p>0$ are constants. If $u(x, y)$ satisfies

$$
\begin{align*}
u^{q}(x, y) \leq & a(x, y)+\frac{q}{q-p} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) u^{p}(s, t)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) u^{p}(\tau, t) \Delta \tau\right] \nabla t \Delta s \tag{2.12}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq\left\{p(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right\}^{\frac{1}{q-p}}, \tag{2.13}
\end{equation*}
$$

where

$$
p(x, y)=(a(x, y))^{\frac{q-p}{q}}+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s .
$$

Proof In Theorem 2.6, by letting $\psi(u)=u^{q}, \omega(u)=u^{p}$, we have

$$
G(v)=\int_{\nu_{0}}^{v} \frac{\Delta s}{\omega\left(\psi^{-1}(s)\right)}=\int_{\nu_{0}}^{v} \frac{\Delta s}{s^{\frac{p}{q}}} \geq \frac{q}{q-p}\left(v^{\frac{q-p}{q}}-v_{0}^{\frac{q-p}{q}}\right), \quad v \geq v_{0}>0
$$

and

$$
G^{-1}(v) \geq\left\{v_{0}^{\frac{q-p}{q}}+\frac{q-p}{q} v\right\}^{\frac{1}{q-p}} .
$$

We obtain inequality (2.13).

Theorem 2.9 Under the hypotheses of Theorem 2.6, further, let $\psi, \omega, \eta \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$be nondecreasing functions with $\{\psi, \omega, \eta\}(u)>0$ for $u>0$, and $\lim _{u \rightarrow+\infty} \psi(u)=+\infty$. If $u(x, y)$ satisfies

$$
\begin{align*}
\psi(u(x, y)) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) \Delta \tau\right] \nabla t \Delta s \tag{2.14}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[F(p(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right)\right\} \tag{2.15}
\end{equation*}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G and p are as in (2.3), (2.11) respectively and

$$
\begin{equation*}
F(v)=\int_{v_{0}}^{v} \frac{\Delta s}{\eta\left(\psi^{-1}\left(G^{-1}(s)\right)\right)}, \quad v \geq v_{0}>0, \quad F(+\infty)=+\infty \tag{2.16}
\end{equation*}
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[F(p(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right] \in \operatorname{Dom}\left(F^{-1}\right) .
$$

Proof Assume that $a(x, y)>0$. Fixing arbitrary $\left(x_{0}, y_{0}\right) \in \Omega$, we define a positive and nondecreasing function $z(x, y)$ by

$$
\begin{align*}
z(x, y)= & a\left(x_{0}, y_{0}\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \tag{2.17}\\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) \Delta \tau\right] \nabla t \Delta s \tag{2.18}
\end{align*}
$$

for $0 \leq x \leq x_{0} \leq x_{1}, 0 \leq y \leq y_{0} \leq y_{1}$, then $z\left(x_{0}, y\right)=z\left(x, y_{0}\right)=a\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}(z(x, y)) \tag{2.19}
\end{equation*}
$$

Taking Δ-derivative for (2.17) with employing Theorem 1.5(i) gives

$$
\begin{align*}
z^{\Delta_{x}}(x, y)= & \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)[f(\theta(x), t) \omega(u(\theta(x), t)) \eta(u(\theta(x), t)) \tag{2.20}\\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \omega(u(\tau, t)) \Delta \tau\right] \nabla t \tag{2.21}\\
\leq & \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t) \omega\left(\psi^{-1}(z(\theta(x), t))\right)\right. \tag{2.22}\\
& \left.\times \eta\left(\psi^{-1}(z(\theta(x), t))\right)+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \omega\left(\psi^{-1}(z(\tau, t))\right) \Delta \tau\right] \nabla t \tag{2.23}\\
\leq & \theta^{\Delta}(x) \cdot \omega\left(\psi^{-1}(z(\theta(x), \vartheta(y)))\right) \tag{2.24}\\
& \times \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t) \eta\left(\psi^{-1}(z(\theta(x), t))\right)\right. \tag{2.25}\\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \tag{2.26}
\end{align*}
$$

From (2.20) we have

$$
\begin{align*}
\frac{z^{\Delta_{x}}(x, y)}{\omega\left(\psi^{-1}(z(x, y))\right)} \leq & \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t) \eta\left(\psi^{-1}(z(\theta(x), t))\right)\right. \tag{2.27}\\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \tag{2.28}
\end{align*}
$$

Taking Δ-integral for (2.27) gives

$$
\begin{aligned}
G(z(x, y)) \leq & G\left(z\left(x_{0}, y\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) \eta\left(\psi^{-1}(z(s, t))\right)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s
\end{aligned}
$$

$$
\begin{aligned}
\leq & G\left(a\left(x_{0}, y_{0}\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) \eta\left(\psi^{-1}(z(s, t))\right)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s .
\end{aligned}
$$

Since $\left(x_{0}, y_{0}\right) \in \Omega$ is chosen arbitrarily, the last inequality can be rewritten as

$$
\begin{equation*}
G(z(x, y)) \leq p(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \eta\left(\psi^{-1}(z(s, t))\right) \nabla t \Delta s . \tag{2.29}
\end{equation*}
$$

Since $p(x, y)$ is a nondecreasing function, an application of Lemma 2.1 to (2.29) gives us

$$
\begin{equation*}
z(x, y) \leq G^{-1}\left(F^{-1}\left[F(p(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right) \tag{2.30}
\end{equation*}
$$

From (2.19) and (2.30) we obtain the desired inequality (2.15).
Now, we take the case $a(x, y)=0$ for some $(x, y) \in \Omega$. Let $a_{\epsilon}(x, y)=a(x, y)+\epsilon$ for all $(x, y) \in$ Ω, where $\epsilon>0$ is arbitrary, then $a_{\epsilon}(x, y)>0$ and $a_{\epsilon}(x, y) \in C\left(\Omega, \mathbb{R}_{+}\right)$are nondecreasing with respect to $(x, y) \in \Omega$. We carry out the above procedure with $a_{\epsilon}(x, y)>0$ instead of $a(x, y)$, and we get

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[F\left(p_{\epsilon}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right)\right\}
$$

where

$$
p_{\epsilon}(x, y)=G\left(a_{\epsilon}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s .
$$

Letting $\epsilon \rightarrow 0^{+}$, we obtain (2.15). The proof is complete.

Now, as special cases of our results, we will give the continuous, discrete, and quantum inequalities. Namely, in the cases of time scales $\mathbb{T}=\mathbb{R}, \mathbb{T}=h \mathbb{Z}, \mathbb{T}=\mathbb{Z}$, and $\mathbb{T}=\overline{q^{\mathbb{Z}}}$.

Remark 2.10 If we take $\mathbb{T}=\mathbb{R}, x_{0}=0$, and $y_{0}=0$ in Theorem 2.9 , then, by relation (1.1), inequality (2.14) becomes the inequality obtained in [15, Theorem 2.2(A_2)].

Corollary 2.11 If we take $\mathbb{T}=h \mathbb{Z}$ in Theorem 2.9 by relation (1.3), then the following inequality

$$
\begin{aligned}
& \psi(u(x, y)) \leq a(x, y)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{\vartheta(y)}{h}}^{h}+1 \\
& y_{1}(s h, t h)[f(s h, t h) \omega(u(s h, t h)) \eta(u(s h, t h)) \\
&\left.+h \sum_{t=\frac{x_{0}}{h}}^{\frac{s}{h}-1} \phi_{2}(\tau, t h) \omega(u(\tau, t h))\right]
\end{aligned}
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[F(p(x, y))+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right]\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G and p are as in (2.3) and (2.11), respectively, and

$$
F(v)=\sum_{s=\frac{v_{0}}{h}}^{\frac{v}{h}} \frac{h}{\eta\left(\psi^{-1}\left(G^{-1}(s h)\right)\right)}, \quad v \geq v_{0}>0, \quad F(+\infty)=+\infty
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[F(p(x, y))+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right] \in \operatorname{Dom}\left(F^{-1}\right) .
$$

Remark 2.12 In Corollary 2.11, if we take $h=1$, then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\sum_{t=x_{0}}^{s-1} \phi_{2}(\tau, t) \omega(u(\tau, t))\right]
\end{aligned}
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[F(p(x, y))+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t) s\right]\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G and p are as in (2.3), and

$$
F(v)=\sum_{s=v_{0}}^{v-1} \frac{1}{\eta\left(\psi^{-1}\left(G^{-1}(s)\right)\right)}, \quad v \geq v_{0}>0, \quad F(+\infty)=+\infty,
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[F(p(x, y))+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t)\right] \in \operatorname{Dom}\left(F^{-1}\right) .
$$

Corollary 2.13 If we take $\mathbb{T}=\overline{q^{\mathbb{Z}}}$ in Theorem 2.9 by relation (1.4), then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} \gamma_{q}\right)} y^{\vartheta(x))+1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right) \\
& \times\left[f\left(q^{s}, q^{t}\right) \omega\left(u\left(q^{s}, q^{t}\right)\right) \eta\left(u\left(q^{s}, q^{t}\right)\right)\right.
\end{aligned}
$$

$$
\left.+(q-1) \sum_{t=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} s\right)-1} q^{t} \phi_{2}\left(\tau, q^{t}\right) \omega(u(\tau, t))\right]
$$

for $(x, y) \in \Omega$, then

$$
\begin{aligned}
u(x, y) \leq & \psi^{-1}\left\{G ^ { - 1 } \left(F^{-1}[F(p(x, y))\right.\right. \\
& \left.\left.\left.+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)} \sum_{t=\left(\log _{q} y_{0}\right)} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right) s\right]\right)\right\}
\end{aligned}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where G and p are as in (2.3), and

$$
F(v)=\sum_{s=\left(\log _{q} v_{0}\right)}^{\left(\log _{q} v\right)-1} \frac{(q-1) q^{s}}{\eta\left(\psi^{-1}\left(G^{-1}\left(q^{s}\right)\right)\right)}, \quad v \geq v_{0}>0, \quad F(+\infty)=+\infty,
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[F(p(x, y))+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right] \in \operatorname{Dom}\left(F^{-1}\right) .
$$

Corollary 2.14 Let the functions $u, a, f, \phi_{1}, \phi_{2}, \theta$, and ϑ be as in Theorem 2.6. Further, suppose that q, p, and r are constants with $p>0, r>0$, and $q>p+r$. If $u(x, y)$ satisfies

$$
\begin{align*}
u^{q}(x, y) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) u^{p}(s, t) u^{r}(s, t)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) u^{p}(\tau, t) \Delta \tau\right] \nabla t \Delta s \tag{2.31}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq\left\{[p(x, y)]^{\frac{q-p-r}{q-p}}+\frac{q-p-r}{q} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right\}^{\frac{1}{q-p-r}}, \tag{2.32}
\end{equation*}
$$

where

$$
p(x, y)=(a(x, y))^{\frac{q-p}{q}}+\frac{q-p}{q} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s .
$$

Proof An application of Theorem 2.9 with $\psi(u)=u^{q}, \omega(u)=u^{p}$, and $\eta(u)=u^{r}$ yields the desired inequality (2.32).

Theorem 2.15 Under the hypotheses of Theorem 2.9. If $u(x, y)$ satisfies

$$
\begin{align*}
\psi(u(x, y)) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) \eta(u(\tau, t)) \Delta \tau\right] \nabla t \Delta s \tag{2.33}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[p_{0}(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right)\right\} \tag{2.34}
\end{equation*}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
p_{0}(x, y)=F(G(a(x, y)))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[p_{0}(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right] \in \operatorname{Dom}\left(F^{-1}\right) .
$$

Proof Assume that $a(x, y)>0$. Fixing arbitrary $\left(x_{0}, y_{0}\right) \in \Omega$, we define a positive and nondecreasing function $z(x, y)$ by

$$
\begin{aligned}
z(x, y)= & a\left(x_{0}, y_{0}\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \omega(u(\tau, t)) \eta(u(\tau, t)) \Delta \tau\right] \nabla t \Delta s
\end{aligned}
$$

for $0 \leq x \leq x_{0} \leq x_{1}, 0 \leq y \leq y_{0} \leq y_{1}$, then $z\left(x_{0}, y\right)=z\left(x, y_{0}\right)=a\left(x_{0}, y_{0}\right)$, and

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}(z(x, y)) \tag{2.35}
\end{equation*}
$$

By the same steps as the proof of Theorem 2.9, we obtain

$$
\begin{aligned}
z(x, y) \leq & G^{-1}\left\{G\left(a\left(x_{0}, y_{0}\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) \eta\left(\psi^{-1}(z(s, t))\right)\right.\right. \\
& \left.\left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \eta\left(\psi^{-1}(z(\tau, t))\right) \Delta \tau\right] \nabla t \Delta s\right\} .
\end{aligned}
$$

We define a nonnegative and nondecreasing function $v(x, y)$ by

$$
\begin{aligned}
v(x, y)= & G\left(a\left(x_{0}, y_{0}\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[\left[f(s, t) \eta\left(\psi^{-1}(z(s, t))\right)\right]\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \eta\left(\psi^{-1}(z(\tau, t))\right) \Delta \tau\right] \nabla t \Delta s,
\end{aligned}
$$

then $v\left(x_{0}, y\right)=v\left(x, y_{0}\right)=G\left(a\left(x_{0}, y_{0}\right)\right)$,

$$
\begin{equation*}
z(x, y) \leq G^{-1}[\nu(x, y)] \tag{2.36}
\end{equation*}
$$

and then

$$
\begin{aligned}
v^{\Delta x}(x, y) \leq & \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t) \eta\left(\psi^{-1}\left(G^{-1}(v(\theta(x), y))\right)\right)\right. \\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \eta\left(\psi^{-1}\left(G^{-1}(v(\tau, y))\right)\right) \Delta \tau\right] \nabla t \\
\leq & \theta^{\Delta}(x) \eta\left(\psi^{-1}\left(G^{-1}(v(\theta(x), \vartheta(y)))\right)\right) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)[f(\theta(x), t) \\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t
\end{aligned}
$$

or

$$
\frac{v^{\Delta x}(x, y)}{\eta\left(\psi^{-1}\left(G^{-1}(v(x, y))\right)\right)} \leq \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t)+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t .
$$

Taking Δ-integral for the above inequality gives

$$
F(v(x, y)) \leq F\left(v\left(x_{0}, y\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t)+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s
$$

or

$$
\begin{align*}
v(x, y) \leq & F^{-1}\left\{F\left(G\left(a\left(x_{0}, y_{0}\right)\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)[f(s, t)\right. \\
& \left.\left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s\right\} . \tag{2.37}
\end{align*}
$$

From (2.35)-(2.37), and since $\left(x_{0}, y_{0}\right) \in \Omega$ is chosen arbitrarily, we obtain the desired inequality (2.34). If $a(x, y)=0$, we carry out the above procedure with $\epsilon>0$ instead of $a(x, y)$ and subsequently let $\epsilon \rightarrow 0$. The proof is complete.

Now, as special cases of our results, we will give the continuous, discrete, and quantum inequalities. Namely, in the cases of time scales $\mathbb{T}=\mathbb{R}, \mathbb{T}=h \mathbb{Z}, \mathbb{T}=\mathbb{Z}$, and $\mathbb{T}=\overline{q^{\mathbb{Z}}}$.

Remark 2.16 If we take $\mathbb{T}=\mathbb{R}$ and $x_{0}=0$ and $y_{0}=0$ in Theorem 2.15 , then, by relation (1.1), inequality (2.33) becomes the inequality obtained in [15, Theorem 2.2($\left.\left.\mathrm{A}_{3}\right)\right]$.

Corollary 2.17 If we take $\mathbb{T}=h \mathbb{Z}$ in Theorem 2.15 by relation (1.3), then the following inequality

$$
\begin{aligned}
& \psi(u(x, y)) \leq a(x, y)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{v(y)}{h}}^{h}+1 \\
& \phi_{1}(s h, t h)[f(s h, t h) \omega(u(s h, t h)) \eta(u(s h, t h)) \\
&\left.+h \sum_{t=x_{0}}^{\frac{s}{h}-1} \phi_{2}(\tau, t h) \omega(u(\tau, t h)) \eta(u(\tau, t h))\right]
\end{aligned}
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[p_{0}(x, y)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right]\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
p_{0}(x, y)=F(G(a(x, y)))+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h)\left(\sum_{t=\frac{x_{0}}{h}}^{\frac{s}{h}} \phi_{2}(\tau, t h)\right)
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[p_{0}(x, y)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right] \in \operatorname{Dom}\left(F^{-1}\right) .
$$

Remark 2.18 In Corollary 2.17, if we take $h=1$, then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t)[f(s, t) \omega(u(s, t)) \eta(u(s, t)) \\
& \left.+\sum_{s=x_{0}}^{s-1} \phi_{2}(\tau, t) \omega(u(\tau, t)) \eta(u(\tau, t))\right]
\end{aligned}
$$

for $(x, y) \in \Omega$ implies

$$
u(x, y) \leq \psi^{-1}\left\{G^{-1}\left(F^{-1}\left[p_{0}(x, y)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t)\right]\right)\right\}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
p_{0}(x, y)=F(G(a(x, y)))+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t)\left(\sum_{t=x_{0}}^{s-1} \phi_{2}(\tau, t)\right),
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[p_{0}(x, y)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t)\right] \in \operatorname{Dom}\left(F^{-1}\right)
$$

Corollary 2.19 If we take $\mathbb{T}=\overline{q^{\mathbb{Z}}}$ in Theorem 2.15 by relation (1.4), then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)} q^{(s+t)} \\
& \times \phi_{1}\left(q^{s}, q^{t}\right)\left[f\left(q^{s}, q^{t}\right) \omega\left(u\left(q^{s}, q^{t}\right)\right) \eta\left(u\left(q^{s}, q^{t}\right)\right)\right. \\
& \left.+(q-1) \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} s\right)-1} q^{t} \phi_{2}\left(\tau, q^{t}\right) \omega\left(u\left(\tau, q^{t}\right)\right) \eta\left(u\left(\tau, q^{t}\right)\right)\right]
\end{aligned}
$$

for $(x, y) \in \Omega$ implies

$$
\begin{aligned}
u(x, y) \leq & \psi^{-1}\left\{G ^ { - 1 } \left(F ^ { - 1 } \left[p_{0}(x, y)\right.\right.\right. \\
& \left.\left.\left.+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)} q^{(s+t))+1} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right]\right)\right\}
\end{aligned}
$$

for $0 \leq x \leq x_{1}, 0 \leq y \leq y_{1}$, where

$$
p_{0}(x, y)=F(G(a(x, y)))+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left.\log _{q} \theta(x)\right)-1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right)\left(\sum_{t=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} s\right)-1} \phi_{2}\left(\tau, q^{t}\right)\right)
$$

and $\left(x_{1}, y_{1}\right) \in \Omega$ is chosen so that

$$
\left[p_{0}(x, y)+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right] \in \operatorname{Dom}\left(F^{-1}\right)
$$

Corollary 2.20 Under the hypotheses of Corollary 2.14. If $u(x, y)$ satisfies

$$
\begin{align*}
u^{q}(x, y) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) u^{p}(s, t) u^{r}(s, t)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) u^{p}(\tau, t) u^{r}(\tau, t) \Delta \tau\right] \nabla t \Delta s \tag{2.38}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq\left\{p_{0}(x, y)+\frac{q-p-r}{q} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right\}^{\frac{1}{q-p-r}} \tag{2.39}
\end{equation*}
$$

where

$$
p_{0}(x, y)=(a(x, y))^{\frac{q-p-r}{q}}+\frac{q-p-r}{q} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s .
$$

Proof An application of Theorem 2.15 with $\psi(u)=u^{q}, \omega(u)=u^{p}$, and $\eta(u)=u^{r}$ yields the desired inequality (2.39).

Theorem 2.21 Under the hypotheses of Theorem 2.9. If $u(x, y)$ satisfies

$$
\begin{align*}
\psi(u(x, y)) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) \eta(u(s, t)) \\
& \times\left[f(s, t) \omega(u(s, t))+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s \tag{2.40}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}\left\{G_{1}^{-1}\left(F_{1}^{-1}\left[F_{1}\left(p_{1}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right)\right\} \tag{2.41}
\end{equation*}
$$

for $0 \leq x \leq x_{2}, 0 \leq y \leq y_{2}$, where

$$
\begin{aligned}
& G_{1}(v)=\int_{v_{0}}^{v} \frac{\Delta s}{\eta\left(\psi^{-1}(s)\right)}, \quad v \geq v_{0}>0, \quad G_{1}(+\infty)=\int_{v_{0}}^{+\infty} \frac{\Delta s}{\eta\left(\psi^{-1}(s)\right)}=+\infty \\
& F_{1}(v)=\int_{v_{0}}^{v} \frac{\Delta s}{\omega\left[\psi^{-1}\left(G_{1}^{-1}(s)\right)\right]}, \quad v \geq v_{0}>0, \quad F_{1}(+\infty)=+\infty \\
& p_{1}(x, y)=G_{1}(a(x, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s,
\end{aligned}
$$

and $\left(x_{2}, y_{2}\right) \in \Omega$ is chosen so that

$$
\left[F_{1}\left(p_{1}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right] \in \operatorname{Dom}\left(F_{1}^{-1}\right) .
$$

Proof Suppose that $a(x, y)>0$. Fixing an arbitrary $\left(x_{0}, y_{0}\right) \in \Omega$, we define a positive and nondecreasing function $z(x, y)$ by

$$
\begin{aligned}
z(x, y)= & a\left(x_{0}, y_{0}\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) \eta(u(s, t))[f(s, t) \omega(u(s, t)) \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s
\end{aligned}
$$

for $0 \leq x \leq x_{0} \leq x_{2}, 0 \leq y \leq y_{0} \leq y_{2}$, then $z\left(x_{0}, y\right)=z\left(x, y_{0}\right)=a\left(x_{0}, y_{0}\right)$,

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}(z(x, y)) \tag{2.42}
\end{equation*}
$$

and

$$
\begin{aligned}
z^{\Delta_{x}}(x, y) \leq & \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t) \eta\left[\psi^{-1}(z(\theta(x), t))\right]\left[f(\theta(x), t) \omega\left(\psi^{-1}(z(\theta(x), t))\right)\right. \\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t
\end{aligned}
$$

$$
\begin{aligned}
\leq & \theta^{\Delta}(x) \eta\left[\psi^{-1}(z(\theta(x), \vartheta(y)))\right] \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t) \omega\left(\psi^{-1}(z(\theta(x), t))\right)\right. \\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t
\end{aligned}
$$

then

$$
\begin{aligned}
\frac{z^{\Delta_{x}}(x, y)}{\eta\left[\psi^{-1}(z(x, y))\right]} \leq & \theta^{\Delta}(x) \int_{y_{0}}^{\vartheta(y)} \phi_{1}(\theta(x), t)\left[f(\theta(x), t) \omega\left(\psi^{-1}(z(\theta(x), t))\right)\right. \\
& \left.+\int_{x_{0}}^{\theta(x)} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t
\end{aligned}
$$

Taking Δ-integral for the above inequality gives

$$
\begin{aligned}
G_{1}(z(x, y)) \leq & G_{1}(z(0, y))+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) \omega\left(\psi^{-1}(z(s, t))\right)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s
\end{aligned}
$$

then

$$
\begin{aligned}
G_{1}(z(x, y)) \leq & G_{1}\left(a\left(x_{0}, y_{0}\right)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left[f(s, t) \omega\left(\psi^{-1}(z(s, t))\right)\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s
\end{aligned}
$$

Since $\left(x_{0}, y_{0}\right) \in \Omega$ is chosen arbitrarily, the last inequality can be restated as

$$
\begin{equation*}
G_{1}(z(x, y)) \leq p_{1}(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \omega\left(\psi^{-1}(z(s, t))\right) \nabla t \Delta s \tag{2.43}
\end{equation*}
$$

It is easy to observe that $p_{1}(x, y)$ is a positive and nondecreasing function for all $(x, y) \in \Omega$, then an application of Lemma 2.1 to (2.43) yields the inequality

$$
\begin{equation*}
z(x, y) \leq G_{1}^{-1}\left(F_{1}^{-1}\left[F_{1}\left(p_{1}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right) \tag{2.44}
\end{equation*}
$$

From (2.44) and (2.42) we get the desired inequality (2.41).
If $a(x, y)=0$, we carry out the above procedure with $\epsilon>0$ instead of $a(x, y)$ and subsequently let $\epsilon \rightarrow 0$. The proof is complete.

Now, as special cases of our results, we will give the continuous, discrete, and quantum inequalities. Namely, in the cases of time scales $\mathbb{T}=\mathbb{R}, \mathbb{T}=h \mathbb{Z}, \mathbb{T}=\mathbb{Z}$, and $\mathbb{T}=\overline{q^{\mathbb{Z}}}$.

Remark 2.22 If we take $\mathbb{T}=\mathbb{R}$ and $x_{0}=0$ and $y_{0}=0$ in Theorem 2.21 , then, by relation (1.1), inequality (2.41) becomes the inequality obtained in [15, Theorem 2.7].

Corollary 2.23 If we take $\mathbb{T}=h \mathbb{Z}$ in Theorem 2.15 by relation (1.3), then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) \eta(u(s h, t h)) \\
\times & {\left[f(s h, t h) \omega(u(s h, t h))+\sum_{t=\frac{x_{0}}{h}}^{\frac{s}{h}-1} \phi_{2}(\tau, t h)\right] }
\end{aligned}
$$

for $(x, y) \in \Omega$, then

$$
u(x, y) \leq \psi^{-1}\left\{G_{1}^{-1}\left(F_{1}^{-1}\left[F_{1}\left(p_{1}(x, y)\right)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right]\right)\right\}
$$

for $0 \leq x \leq x_{2}, 0 \leq y \leq y_{2}$, where

$$
\begin{aligned}
& G_{1}(v)=\sum_{s=\frac{v_{0}}{h}}^{\frac{v}{h}-1} \frac{h}{\eta\left(\psi^{-1}(s h)\right)}, \quad v \geq v_{0}>0, \quad G_{1}(+\infty)=\sum_{s=\frac{v_{0}}{h}}^{+\infty} \frac{h}{\eta\left(\psi^{-1}(s h)\right)}=+\infty \\
& F_{1}(v)=\sum_{s=\frac{v_{0}}{h}}^{\frac{v}{h}-1} \frac{h}{\omega\left[\psi^{-1}\left(G_{1}^{-1}(s h)\right)\right]}, \quad v \geq v_{0}>0, \quad F_{1}(+\infty)=+\infty \\
& p_{1}(x, y)=G_{1}(a(x, y))+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h)\left(h \sum_{t=\frac{x_{0}}{h}}^{\frac{s}{h}-1} \phi_{2}(\tau, t h)\right),
\end{aligned}
$$

and $\left(x_{2}, y_{2}\right) \in \Omega$ is chosen so that

$$
\left[F_{1}\left(p_{1}(x, y)\right)+h^{2} \sum_{s=\frac{x_{0}}{h}}^{\frac{\theta(x)}{h}-1} \sum_{t=\frac{y_{0}}{h}}^{\frac{\vartheta(y)}{h}+1} \phi_{1}(s h, t h) f(s h, t h)\right] \in \operatorname{Dom}\left(F_{1}^{-1}\right) .
$$

Corollary 2.24 In Corollary 2.23, if we take $h=1$, then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) \eta(u(s, t)) \\
& \times\left[f(s, t) \omega(u(s, t))+\sum_{t=x_{0}}^{s-1} \phi_{2}(\tau, t)\right]
\end{aligned}
$$

for $(x, y) \in \Omega$, then

$$
u(x, y) \leq \psi^{-1}\left\{G_{1}^{-1}\left(F_{1}^{-1}\left[F_{1}\left(p_{1}(x, y)\right)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t)\right]\right)\right\}
$$

for $0 \leq x \leq x_{2}, 0 \leq y \leq y_{2}$, where

$$
\begin{aligned}
& G_{1}(v)=\sum_{s=v_{0}}^{v-1} \frac{1}{\eta\left(\psi^{-1}(s)\right)}, \quad v \geq v_{0}>0, \quad G_{1}(+\infty)=\sum_{s=v_{0}}^{+\infty} \frac{1}{\eta\left(\psi^{-1}(s)\right)}=+\infty, \\
& F_{1}(v)=\sum_{s=v_{0}}^{v-1} \frac{1}{\omega\left[\psi^{-1}\left(G_{1}^{-1}(s)\right)\right]}, \quad v \geq v_{0}>0, \quad F_{1}(+\infty)=+\infty \\
& p_{1}(x, y)=G_{1}(a(x, y))+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t)\left(\sum_{t=x_{0}}^{s-1} \phi_{2}(\tau, t)\right)
\end{aligned}
$$

and $\left(x_{2}, y_{2}\right) \in \Omega$ is chosen so that

$$
\left[F_{1}\left(p_{1}(x, y)\right)+\sum_{s=x_{0}}^{\theta(x)-1} \sum_{t=y_{0}}^{\vartheta(y)+1} \phi_{1}(s, t) f(s, t)\right] \in \operatorname{Dom}\left(F_{1}^{-1}\right)
$$

Corollary 2.25 If we take $\mathbb{T}=\overline{q^{\mathbb{Z}}}$ in Theorem 2.21 by relation (1.4), then the following inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right) \eta\left(u\left(q^{s}, q^{t}\right)\right) \\
& \times\left[f\left(q^{s}, q^{t}\right) \omega\left(u\left(q^{s}, q^{t}\right)\right)+(q-1) \sum_{t=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} s\right)-1} q^{t} \phi_{2}\left(\tau, q^{t}\right)\right]
\end{aligned}
$$

for $(x, y) \in \Omega$, then

$$
\begin{aligned}
u(x, y) \leq & \psi^{-1}\left\{G _ { 1 } ^ { - 1 } \left(F _ { 1 } ^ { - 1 } \left[F_{1}\left(p_{1}(x, y)\right)\right.\right.\right. \\
& \left.\left.\left.+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} q^{\left(\log _{q} \vartheta(y)\right)+1} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right]\right)\right\}
\end{aligned}
$$

for $0 \leq x \leq x_{2}, 0 \leq y \leq y_{2}$, where

$$
\begin{aligned}
& G_{1}(v)=\sum_{s=\left(\log _{q} v_{0}\right)}^{\left(\log _{q} v\right)-1} \frac{(q-1) q^{s}}{\eta\left(\psi^{-1}\left(q^{s}\right)\right)}, \quad v \geq v_{0}>0, \\
& G_{(q-1) q^{s}}(+\infty)=\sum_{s=\left(\log _{q} v_{0}\right)}^{+\infty} \frac{(q-1) q^{s}}{\eta\left(\psi^{-1}\left(q^{s}\right)\right)}=+\infty, \\
& F_{1}(v)=\sum_{s=\left(\log _{q} v_{0}\right)}^{\left(\log _{q} v\right)-1} \frac{(q-1) q^{s}}{\omega\left[\psi^{-1}\left(G_{1}^{-1}\left(q^{s}\right)\right)\right]}, \quad v \geq v_{0}>0, \quad F_{1}(+\infty)=+\infty, \\
& p_{1}(x, y)=G_{1}(a(x, y))+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)}^{\left(\log _{q} \theta(x)\right)-1} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left(\log _{q} \vartheta(y)\right)+1} q^{(s+t)} \phi_{1}\left(q^{s}, q^{t}\right)\left(\sum_{t=x_{0}}^{s-1} \phi_{2}\left(\tau, q^{t}\right)\right)
\end{aligned}
$$

and $\left(x_{2}, y_{2}\right) \in \Omega$ is chosen so that

$$
\left[F_{1}\left(p_{1}(x, y)\right)+(q-1)^{2} \sum_{s=\left(\log _{q} x_{0}\right)} \sum_{t=\left(\log _{q} y_{0}\right)}^{\left.\log _{q} \theta(x)\right)-1} q^{\left(\log _{q} \vartheta(y)\right)+1} \phi_{1}\left(q^{s}, q^{t}\right) f\left(q^{s}, q^{t}\right)\right] \in \operatorname{Dom}\left(F_{1}^{-1}\right) .
$$

Theorem 2.26 Under the hypotheses of Theorem 2.9, and let p be a nonnegative constant. If $u(x, y)$ satisfies

$$
\begin{align*}
\psi(u(x, y)) \leq & a(x, y)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) u^{p}(s, t) \\
& \times\left[f(s, t) \omega(u(s, t))+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s \tag{2.45}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq \psi^{-1}\left\{G_{1}^{-1}\left(F_{1}^{-1}\left[F_{1}\left(p_{1}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right)\right\} \tag{2.46}
\end{equation*}
$$

for $0 \leq x \leq x_{2}, 0 \leq y \leq y_{2}$, where

$$
\begin{equation*}
G_{1}(v)=\int_{v_{0}}^{v} \frac{\Delta s}{\left[\psi^{-1}(s)\right]^{p}}, \quad v \geq v_{0}>0, \quad G_{1}(+\infty)=\int_{v_{0}}^{+\infty} \frac{\Delta s}{\left[\psi^{-1}(s)\right]^{p}}=+\infty, \tag{2.47}
\end{equation*}
$$

and F_{1}, p_{1} are as in Theorem 2.21 and $\left(x_{2}, y_{2}\right) \in \Omega$ is chosen so that

$$
\left[F_{1}\left(p_{1}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right] \in \operatorname{Dom}\left(F_{1}^{-1}\right) .
$$

Proof An application of Theorem 2.21 with $\eta(u)=u^{p}$ yields the desired inequality (2.46).

Remark 2.27 Taking $\mathbb{T}=\mathbb{R}$. The inequality established in Theorem 2.26 generalizes [38, Theorem 1] (with $p=1, a(x, y)=b(x)+c(y), x_{0}=0, y_{0}=0, \phi_{1}(s, t) f(s, t)=h(s, t)$, and $\left.\phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right)=g(s, t)\right)$.

Corollary 2.28 Under the hypotheses of Theorem 2.26, and let $q>p>0$ be constants. If $u(x, y)$ satisfies

$$
\begin{align*}
u^{q}(x, y) \leq & a(x, y)+\frac{p}{p-q} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) u^{p}(s, t) \\
& \times\left[f(s, t) \omega(u(s, t))+\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right] \nabla t \Delta s \tag{2.48}
\end{align*}
$$

for $(x, y) \in \Omega$, then

$$
\begin{equation*}
u(x, y) \leq\left\{F_{1}^{-1}\left[F_{1}\left(p_{1}(x, y)\right)+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t) f(s, t) \nabla t \Delta s\right]\right\}^{\frac{1}{q-p}} \tag{2.49}
\end{equation*}
$$

for $0 \leq x \leq x_{2}, 0 \leq y \leq y_{2}$, where

$$
p_{1}(x, y)=[a(x, y)]^{\frac{q-p}{q}}+\int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s
$$

and F_{1} is defined in Theorem 2.21.

Proof An application of Theorem 2.26 with $\psi(u(x, y))=u^{p}$ to (2.48) yields inequality (2.49); to save space, we omit the details.

Remark 2.29 Taking $\mathbb{T}=\mathbb{R}, x_{0}=0, y_{0}=0, a(x, y)=b(x)+c(y), \phi_{1}(s, t) f(s, t)=h(s, t)$, and $\phi_{1}(s, t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right)=g(s, t)$ in Corollary 2.28, we obtain [39, Theorem 1].

Remark 2.30 Taking $\mathbb{T}=\mathbb{R}, x_{0}=0, y_{0}=0, a(x, y)=c^{\frac{p}{p-q}}, \phi_{1}(s, t) f(s, t)=h(t)$, and $\phi_{1}(s$, $t)\left(\int_{x_{0}}^{s} \phi_{2}(\tau, t) \Delta \tau\right)=g(t)$ and keeping y fixed in Corollary 2.28, we obtain [25, Theorem 2.1].

3 Application

In what follows, we discus the boundedness of the solutions of the initial boundary value problem for partial delay dynamic equation of the form

$$
\begin{align*}
& \left(z^{q}\right)^{\Delta_{x} \nabla_{y}}(x, y)=A\left(x, y, z\left(x-h_{1}(x), y-h_{2}(y)\right), \int_{x_{0}}^{x} B\left(s, y, z\left(s-h_{1}(s), y\right)\right) \Delta s\right), \tag{3.1}\\
& z\left(x, y_{0}\right)=a_{1}(x), \quad z\left(x_{0}, y\right)=a_{2}(y), \quad a_{1}\left(x_{0}\right)=a_{y_{0}}(0)=0
\end{align*}
$$

for $(x, y) \in \Omega$, where $z, b \in C\left(\Omega, \mathbb{R}_{+}\right), A \in C\left(\Omega \times R^{2}, R\right), B \in C(\Omega \times R, R)$, and $h_{1} \in$ $C^{1}\left(\mathbb{T}_{1}, \mathbb{R}_{+}\right), h_{2} \in C^{1}\left(\mathbb{T}_{2}, \mathbb{R}_{+}\right)$are nondecreasing functions such that $h_{1}(x) \leq x$ on $\mathbb{T}_{1}, h_{2}(y) \leq$ y on \mathbb{T}_{2}, and $h_{1}^{\Delta}(x)<1, h_{2}^{\Delta}(y)<1$.

Theorem 3.1 Assume that the functions a_{1}, a_{2}, A, B in (3.1) satisfy the conditions

$$
\begin{align*}
& \left|a_{1}(x)+a_{2}(y)\right| \leq a(x, y) \tag{3.2}\\
& |A(s, t, z, u)| \leq \frac{q}{q-p} \phi_{1}(s, t)\left[f(s, t)|z|^{p}+|u|\right] \tag{3.3}\\
& |B(\tau, t, z)| \leq \phi_{2}(\tau, t)|z|^{p} \tag{3.4}
\end{align*}
$$

where $a(x, y), \phi_{1}(s, t), f(s, t)$, and $\phi_{2}(\tau, t)$ are as in Theorem $2.6, q>p>0$ are constants. If $z(x, y)$ satisfies (3.1), then

$$
\begin{equation*}
|z(x, y)| \leq\left\{p(x, y)+M_{1} M_{2} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \bar{\phi}_{1}(s, t) \bar{f}(s, t) \nabla t \Delta s\right\}^{\frac{1}{q-p}}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
p(x, y)= & (a(x, y))^{\frac{q-p}{q}} \\
& +M_{1} M_{2} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \bar{\phi}_{1}(s, t)\left(M_{1} \int_{x_{0}}^{s} \bar{\phi}_{2}(\tau, t) \Delta \tau\right) \nabla t \Delta s
\end{aligned}
$$

and

$$
M_{1}=\operatorname{Max}_{x \in I_{1}} \frac{1}{1-h_{1}^{\Delta}(x)}, \quad M_{2}=\operatorname{Max}_{y \in I_{2}} \frac{1}{1-h_{2}^{\Delta}(y)}
$$

and $\bar{\phi}_{1}(\gamma, \xi)=\phi_{1}\left(\gamma+h_{1}(s), \xi+h_{2}(t)\right), \bar{\phi}_{2}(\mu, \xi)=\phi_{2}\left(\mu, \xi+h_{2}(t)\right), \bar{f}(\gamma, \xi)=f\left(\gamma+h_{1}(s), \xi+\right.$ $\left.h_{2}(t)\right)$.

Proof If $z(x, y)$ is any solution of (3.1), then

$$
\begin{align*}
z^{q}(x, y)= & a_{1}(x)+a_{2}(y) \\
& +\int_{x_{0}}^{x} \int_{y_{0}}^{y} A\left(s, t, z\left(s-h_{1}(s), t-h_{2}(t)\right)\right. \\
& \left.\int_{x_{0}}^{s} B\left(\tau, t, z\left(\tau-h_{1}(\tau), t\right)\right) \Delta \tau\right) \nabla t \Delta s \tag{3.6}
\end{align*}
$$

Using conditions (3.2)-(3.4) in (3.6), we obtain

$$
\begin{align*}
|z(x, y)|^{q} \leq & a(x, y)+\frac{q-p}{q} \int_{x_{0}}^{x} \int_{y_{0}}^{y} \phi_{1}(s, t)\left[f(s, t)\left|z\left(s-h_{1}(s), t-h_{2}(t)\right)\right|^{p}\right. \\
& \left.+\int_{x_{0}}^{s} \phi_{2}(\tau, t)|z(\tau, t)|^{p} \Delta \tau\right] \nabla t \Delta s . \tag{3.7}
\end{align*}
$$

Now, making a change of variables on the right-hand side of (3.7), $s-h_{1}(s)=\gamma, t-h_{2}(t)=\xi$, $x-h_{1}(x)=\theta(x)$ for $x \in \mathbb{T}_{1}, y-h_{2}(y)=\vartheta(y)$ for $y \in \mathbb{T}_{2}$, we obtain the inequality

$$
\begin{align*}
|z(x, y)|^{q} \leq & a(x, y)+\frac{q-p}{q} M_{1} M_{2} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \bar{\phi}_{1}(\gamma, \xi)\left[\bar{f}(\gamma, \xi)|z(\gamma, \xi)|^{p}\right. \\
& \left.+M_{1} \int_{x_{0}}^{\gamma} \bar{\phi}_{2}(\mu, \xi)|z(\mu, t)|^{p} \Delta \mu\right] \nabla \xi \Delta \gamma \tag{3.8}
\end{align*}
$$

We can rewrite inequality (3.8) as follows:

$$
\begin{align*}
|z(x, y)|^{q} \leq & a(x, y)+\frac{q-p}{q} M_{1} M_{2} \int_{x_{0}}^{\theta(x)} \int_{y_{0}}^{\vartheta(y)} \bar{\phi}_{1}(s, t)\left[\bar{f}(s, t)|z(s, t)|^{p}\right. \\
& \left.+M_{1} \int_{x_{0}}^{s} \bar{\phi}_{2}(\tau, t)|z(\tau, t)|^{p} \Delta \tau\right] \nabla t \Delta s . \tag{3.9}
\end{align*}
$$

As an application of Corollary 2.8 to (3.9) with $u(x, y)=|z(x, y)|$, we obtain the desired inequality (3.5). The proof is complete.

4 Conclusion

In this article, we explored new generalizations of the integral retarded inequality given in [15] by the utilization of the integral rule on time scales. We generalized a number of those inequalities to a general time scale. Besides that, in order to obtain some new inequalities as special cases, we also extended our inequalities to discrete, quantum, and continuous calculus. Also, we studied the qualitative properties of solutions of some types of dynamic equations on time scales.

Acknowledgements

Not applicable

Funding

Open access funding provided by The Science, Technology \& Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Availability of data and materials
Not applicable.

Declarations

Competing interests

The authors declare no competing interests.

Author contributions

All authors have read and finalized the manuscript with equal contribution. Conceptualization, resources, and methodology, A.A.E.-D.; writing—original draft preparation, A.A.E.-D.; writing—review, editing and project administration, A.A.E.-D. The author have read and agreed to the published version of the manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 April 2022 Accepted: 16 July 2022 Published online: 25 August 2022

References

1. Abdeldaim, A., El-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations. Appl. Math. Comput. 256, 375-380 (2015)
2. Abdeldaim, A., El-Deeb, A.A., Agarwal, P., El-Sennary, H.A.: On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 41(12), 4737-4753 (2018)
3. Abdeldaim, A., El-Deeb, A.A., Gamal Ahmed, R.: On retarded nonlinear integral inequalities of Gronwall and applications. J. Math. Inequal. 13(4), 1023-1038 (2019)
4. Abdeljawad, T., Rashid, S., Hammouch, Z., İşcan, I.., Chu, Y.-M.: Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020(1), 1 (2020)
5. Agarwal, R., O'Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
6. Agarwal, R.P., Bazighifan, O., Ragusa, M.A.: Nonlinear neutral delay differential equations of fourth-order: oscillation of solutions. Entropy 23(2), 129 (2021)
7. Akin-Bohner, E., Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 6(1), 6 (2005)
8. Aslam Noor, M., Noor, K.I., Rashid, S.: Some new classes of preinvex functions and inequalities. Mathematics 7(1) (2019)
9. Bohner, M., Matthews, T.: The Grüss inequality on time scales. Commun. Math. Anal. 3(1), 1-8 (2007)
10. Bohner, M., Matthews, T.: Ostrowski inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 9(1), 6 (2008)
11. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
12. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
13. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
14. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Inc., Boston (2003)
15. Boudeliou, A., Khellaf, H.: On some delay nonlinear integral inequalities in two independent variables. J. Inequal. Appl. 2015(1), 313 (2015)
16. Dinu, C.: Hermite-Hadamard inequality on time scales. J. Inequal. Appl. 2008, 287947 (2008)
17. El-Deeb, A.A.: Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations. J. Egypt. Math. Soc. 26(1), 1-17 (2018)
18. El-Deeb, A.A., El-Sennary, H.A., Agarwal, P.: Some Opial-type inequalities with higher order delta derivatives on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(1), 29 (2020)
19. El-Deeb, A.A., Kh, F.M., Ismail, G.A.F., Khan, Z.A.: Weighted dynamic inequalities of Opial-type on time scales. Adv. Differ. Equ. 2019(1), 393 (2019)
20. El-Deeb, A.A., Khan, Z.A.: Certain new dynamic nonlinear inequalities in two independent variables and applications. Bound. Value Probl. 2020(1), 31 (2020)
21. El-Deeb, A.A., Rashid, S.: On some new double dynamic inequalities associated with Leibniz integral rule on time scales. Adv. Differ. Equ. 2021(1), 1 (2021)
22. El-Deeb, A.A., Xu, H., Abdeldaim, A., Wang, G.: Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 130, 19 (2019)
23. Ferreira, R.A., Torres, D.F.M.: Generalized retarded integral inequalities. Appl. Math. Lett. 22(6), 876-881 (2009)
24. Ge-JiLe, H., Rashid, S., Aslam Noor, M., Suhail, A., Chu, Y.-M.: Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Math. 5(6), 6108-6123 (2020)
25. Gong Sun, Y.: On retarded integral inequalities and their applications. J. Math. Anal. Appl. 301(2), 265-275 (2005)
26. Hilger, S.: Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg (1988)
27. Hilscher, R.: A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 141(1-2) 219-226 (2002)
28. Kh, F.M., El-Deeb, A.A., Abdeldaim, A., Khan, Z.A., et al.: On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019(1), 323 (2019)
29. Li, J.D.: Opial-type integral inequalities involving several higher order derivatives. J. Math. Anal. Appl. 167(1), 98-110 (1992)
30. Li, W.N.: Some delay integral inequalities on time scales. Comput. Math. Appl. 59(6), 1929-1936 (2010)
31. Ma, Q.-H., Pečarić, J.: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal., Theory Methods Appl. 69(2), 393-407 (2008)
32. Mi, Y.: Some generalized Gronwall-Bellman type impulsive integral inequalities and their applications. J. Appl. Math 2014 (2014)
33. Ocak Akdemir, A., Ihsan Butt, S., Nadeem, M., Ragusa, M.A.: New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 9(2), 122 (2021)
34. Rashid, S., Hammouch, Z., Aydi, H., Ahmad, A.G., Alsharif, A.M.: Novel computations of the time-fractional Fisher's model via generalized fractional integral operators by means of the Elzaki transform. Fractal Fract. 5(3) (2021)
35. Rashid, S., Hammouch, Z., Kalsoom, H., Ashraf, R., Ming Chu, Y.: New investigation on the generalized k-fractional integral operators. Front. Phys. 8, 25 (2020)
36. Řehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 5, 495-507 (2005)
37. Tian, Y., El-Deeb, A.A., Meng, F.: Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discrete Dyn. Nat. Soc. 2018, 5841985 (2018)
38. Tian, Y., Fan, M., Meng, F:: A generalization of retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 221, 239-248 (2013)
39. $\mathrm{Xu}, \mathrm{R} .$, Gong Sun, Y:: On retarded integral inequalities in two independent variables and their applications. Appl. Math Comput. 182(2), 1260-1266 (2006)
40. Zhou, S.-S., Rashid, S., Parveen, S., Akdemir, A.O., Hammouch, Z.: New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Math. 6(5), 4507-4525 (2021)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the materia. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

