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Abstract
The aim of this paper is to prove the existence of generalized variational solutions for
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1 Introduction
Recently, Galewski and Motreanu [5] studied the coercive competitive equation

⎧
⎨

⎩

–div(g( 1
p |∇u|p)|∇u|p–2∇u) + div(|∇u|q–2∇u) = h(x, u) in �,

u = 0 on ∂�,
(1.1)

driven by a competing (p, q)-Laplacian-type operator with weight depending on the gradi-
ent. Problem (1.1) is variational, but the driving operator is competing which means that
the ellipticity condition is not satisfied. For this reason, one cannot establish the existence
of a weak solution, but one can find a so-called generalized variational solution. Moreover,
an abstract setting related to a Galerkin-type scheme is built in [5] that we briefly recall
here for treating new problems with competing operators.

Let E be a separable and reflexive Banach space. We recall that E is separable if there
exists a countable dense subset {hi}i≥1 of E. It is said that a sequence of finite-dimensional
subspaces (En)∞n=1 ⊂ E has the approximation property if

⎧
⎨

⎩

En ⊂ En+1 for n ≥ 1 and
⋃∞

n=1 En = E.

There always exists such a sequence (En)∞n=1 by defining En for n ∈ N as the linear hull of
{h1, . . . , hn}.
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Let A : E → E∗ be a potential operator, which means that A = J ′ (the differential of J) for
a Gâteaux differentiable function J : E →R called the potential of A. Note that the critical
points of J coincide with the solutions to the equation

A(u) = 0, (1.2)

or equivalently (in the weak sense),

〈
A(u), v

〉
= 0 for all v ∈ E. (1.3)

Taking advantage of the variational structure of problem (1.2) involving the functional
J , the following definition sets forth a new type of solution.

Definition 1.1 An element u ∈ E is said to be a generalized variational solution to prob-
lem (1.2) if there exists a sequence of finite-dimensional subspaces (En)∞n=1 ⊂ E with the
approximation property and a sequence of elements (un)∞n=1 with un ∈ En such that

(a) un ⇀ u in E as n → ∞;
(b) infv∈En J(v) = J(un);
(c) A(un) ⇀ 0 in E∗ and 〈A(un), un – u〉 → 0.

We quote the following abstract result from [5, Theorem 4] (stated here in the particular
case k = 0).

Theorem 1.1 Assume that the operator A : E → E∗ is bounded (i.e., A maps bounded sets
into bounded sets) and potential with a coercive potential J : E → R (i.e., lim‖u‖→∞ J(u) =
+∞). Then problem (1.2) has at least one generalized variational solution in the sense of
Definition 1.1.

Remark 1.1 Without additional assumptions, there is no relation between the notion of
(weak) solution in (1.3) and the notion of generalized variational solution given in Def-
inition 1.1. Indeed, the fact that u ∈ E fulfills (1.3) amounts to saying that J ′(u) = 0, but
then one cannot generally expect that the minimization in Definition 1.1(b) is verified.
Conversely, if u ∈ E satisfies Definition 1.1, one cannot generally have the strong conver-
gence un → u in E which would result in (1.3) unless the operator A fulfills the S-property
(meaning that un ⇀ u and 〈A(un), un – u〉 → 0 imply un → u).

The first aim of this paper is to investigate the anisotropic counterpart of problem (1.1),
namely the nonlinear elliptic problem

⎧
⎪⎪⎨

⎪⎪⎩

–
∑N

i=1
∂

∂xi
(gi( 1

pi
| ∂u
∂xi

|pi )| ∂u
∂xi

|pi–2 ∂u
∂xi

)

+
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|qi–2 ∂u

∂xi
) = h(x, u) in �,

u = 0 on ∂�,

(1.4)

on a bounded domain � in R
N (N ≥ 2) with a Lipschitz boundary ∂�. In the statement of

problem (1.4), gi : R→R are continuous functions for which there are constants 0 < agi ≤
gi(t) ≤ bgi for all t ≥ 0 and i = 1, 2, . . . , N , and h : � × R → R is a Carathéodory function
(i.e., h(x, t) is measurable in x and continuous in t).
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A prototype of the driving operator in the left-hand side of equation (1.4) is the com-
peting anisotropic operator –�−→p + �−→q , where

�−→p :=
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂(·)
∂xi

∣
∣
∣
∣

pi–2)
∂(·)
∂xi

,

is the anisotropic p-Laplacian with −→p = (p1, . . . , pn), and

�−→q :=
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂(·)
∂xi

∣
∣
∣
∣

qi–2)
∂(·)
∂xi

is the anisotropic q-Laplacian with −→q = (q1, . . . , qn). In (1.4) we have an extension of �−→p
constructed by means of the weights (g1, . . . , gN ), specifically,

u �→
N∑

i=1

∂

∂xi

(

gi

(
1
pi

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi)∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

)

.

We assume that 1 < p1, . . . , pN < ∞, 1 < q1, . . . , qN < ∞, qi < pi for all i = 1, . . . , N , and

N∑

i=1

1
pi

> 1.

Let us introduce

p+ := max{p1, . . . , pN }, p– := min{p1, . . . , pN }, p∗ :=
N

∑N
i=1

1
pi

– 1
,

and assume that

p+ < p∗.

The anisotropic Sobolev space W 1,−→p
0 (�) is defined as the completion of the set of

smooth functions with compact support C∞
c (�) with respect to the norm

‖u‖
W 1,−→p

0 (�)
:=

N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

Lpi (�)
.

This space is separable and uniformly convex, thus a reflexive Banach space. The dual of
the space W 1,−→p

0 (�) is denoted W –1,−→p ′ (�).
We also introduce

μ := inf
u∈W 1,−→p

0 (�),u�=0

∑N
i=1

1
pi

‖ ∂u
∂xi

‖p–

Lpi (�)

‖u‖p–

Lp– (�)
. (1.5)

The quantity μ in (1.5) is finite due to the compact embedding W 1,−→p
0 (�) ⊂ Lp– (�) (see [4,

Theorem 1]). For various results regarding anisotropic Sobolev spaces, we refer to [1, 3, 4,
6–12].
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In order to simplify the notation, for any real number r > 1 we denote r′ := r/(r – 1) (the
Hölder conjugate of r).

The following condition is assumed to hold:
(H1) There exist a nonnegative function σ ∈ L(p∗)′ (�) and a constant b ≥ 0 such that

∣
∣h(x, t)

∣
∣ ≤ σ (x) + b|t|p∗–1

for a.e. x ∈ � and all t ∈R.
In addition, we formulate the condition:

(H2)ξ ,α Given positive constants ξ and α, it holds

H(x, t) :=
∫ t

0
h(x, s) ds ≤ c1

(|t|α + 1
)

for a.e. x ∈ � and all t ∈R, with a positive constant c1 < ξ .
The usual arguments fail to apply for obtaining a weak solution to problem (1.4), which

means an element u ∈ W 1,−→p
0 (�) satisfying

N∑

i=1

∫

�

gi

(
1
pi

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi)∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

∂v
∂xi

dx

–
N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

qi–2
∂u
∂xi

∂v
∂xi

dx =
∫

�

h(x, u)v dx

for all v ∈ W 1,−→p
0 (�). The reason is the lack of ellipticity condition for equation (1.4). Notice

also that the driving operator in (1.4) is not monotone. The idea is to weaken the notion of
solution, still keeping the main characteristics of problem (1.4) as, for instance, its varia-
tional structure. Hence the Euler functional J : W 1,−→p

0 (�) →R associated to problem (1.4)
is well defined and given by

J(u) =
N∑

i=1

∫

�

Gi

(
1
pi

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi)

dx –
N∑

i=1

1
qi

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

qi

dx –
∫

�

H
(
x, u(x)

)
dx (1.6)

for all u ∈ W 1,−→p
0 (�), where

Gi(x, t) :=
∫ t

0
gi(x, s) ds

for a.e. x ∈ �, all t ∈R, and 1 ≤ i ≤ N .
Now we state the existence result.

Theorem 1.2 Assume that the conditions (H1) and (H2)ξ ,α hold with ξ = μa∗ for a∗ =
min{agi : 1 ≤ i ≤ N} and α = p–. Then there exists a generalized variational solution to
problem (1.4) in the sense of Definition 1.1.
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The second aim of the paper is to study the Dirichlet problem

⎧
⎨

⎩

–Qg
pu + Qqu = h(x, u) in �,

u = 0 on ∂�,
(1.7)

on a bounded domain � in R
N (N ≥ 2) with a Lipschitz boundary ∂�. Problem (1.7) is

driven by the competing Finsler (p, q)-Laplacian-type operator –Qg
p +Qq, with 1 < q < p <

+∞, that we now describe.
Let F : RN → [0, +∞) be a convex function of class C2(RN\{0}), which is even and sat-

isfies F(ξ ) > 0 for each ξ �= 0, and F(tξ ) = |t|F(ξ ) for all t ∈ R, ξ ∈ R
N . Given p ∈ (1, +∞),

we assume that there exists a constant γ > 0 such that

N∑

i,j=1

∇2(Fp)(η)ζiζj ≥ γ |η|p–2|ζ |2

with some positive constant γ , for all η ∈R
N\{0} and ζ ∈R

N .
The Finsler p-Laplacian operator Qp : W 1,p

0 (�) → W –1,p′
0 (�) is defined as

Qpu := div
(
Fp–1(∇u)(∇F)(∇u)

)
, ∀u ∈ W 1,p

0 (�). (1.8)

If F(ξ ) = |ξ | (the Euclidean norm) and p = 2, then it becomes the ordinary Laplacian.
We denote by λ1 the first eigenvalue of –Qp, that is,

λ1 = min
ϕ∈W 1,p

0 (�)\{0}

∫

�
Fp(∇ϕ) dx

∫

�
|ϕ|p dx

. (1.9)

For more details on the operator –Qp, we refer to [2, 13]. As a real life application, we
mention Wulff’s work [14] on crystal shapes.

In (1.7) we have a weighted version of the Finsler p-Laplacian Qp extending (1.8). Specif-
ically, corresponding to a continuous function g : R → R for which there exist constants
ag > 0 and bg > 0 such that ag ≤ g(t) ≤ bg for all t ≥ 0, one sets

Qg
pu = div

(

g
(

1
p

Fp(∇u)
)

Fp–1(∇u)(∇F)(∇u)
)

, ∀u ∈ W 1,p
0 (�).

The underlying space for problem (1.7) is W 1,p
0 (�). Denote by p∗ the critical Sobolev

exponent, that is, p∗ = Np
N–p if N > p and p∗ = +∞ if N ≤ p.

We are in a position to state our result regarding problem (1.7).

Theorem 1.3 Assume that h : � × R → R is a Carathéodory function for which the con-
ditions (H1) and (H2)ξ ,α with ξ = λ1ag

p and α = p hold. Then there exists a generalized
variational solution to problem (1.7) in the sense of Definition 1.1.

Remark 1.2 Problems (1.4) and (1.7) cannot be reduced one to another due to the dif-
ferent structure of the leading operators. For example, the driving operator in (1.4) is or-
thotropic whose properties depend on directions, whereas the driving operator in (1.7) is
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homogeneous. Such features are reflected in the distinct choices for the constants ξ and
α in hypothesis (H2)ξ ,α , as well as in the different proofs of Theorems 1.2 and 1.3.

Remark 1.3 The limit cases when qi = pi for all i = 1, . . . , N in problem (1.4) and q = p in
problem (1.7) generally do not give rise to competing operators, which is the object of our
work. For instance, taking gi ≡ 2 for all i = 1, . . . , N , we obtain an equation driven by the
(negative) pseudo-p-Laplacian which is an elliptic operator.

In the rest of the paper, we prove the existence of generalized variational solutions for
problems (1.4) and (1.7). Sections 2 and 3 contain the proofs of Theorems 1.2 and 1.3,
respectively.

2 Generalized variational solutions for competing anisotropic Laplacian
In this section, we prove the existence of generalized variational solutions for problem
(1.4) by Theorem 1.2, i.e., we present the proof of Theorem 1.2.

We show that we can fit in the setting of Theorem 1.1. Problem (1.4) can be regarded as
an operator equation (1.2) with E = W 1,−→p

0 (�) and

Au = –
N∑

i=1

∂

∂xi

(

gi

(
1
pi

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi)∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

)

+
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

qi–2
∂u
∂xi

)

– h(·, u), ∀u ∈ W 1,−→p
0 (�).

(2.1)

Consider the Nemytskij operator Nh : W 1,−→p
0 (�) → W –1,−→p ′ (�) induced by the

Carathéodory function h : � ×R→ R as

Nh(w) = h
(·, w(·)) for all w ∈ W 1,−→p

0 (�).

Assumption (H1), Hölder’s inequality, and the continuous embedding W 1,−→p
0 (�) ⊂ Lp∗ (�)

(see [4, Theorem 1]) imply that there is a constant C > 0 such that

∫

�

∣
∣h

(
x, w(x)

)
v(x)

∣
∣dx ≤

∫

�

∣
∣σ (x)

∣
∣
∣
∣v(x)

∣
∣dx + b

∫

�

∣
∣w(x)

∣
∣p∗–1v(x) dx

≤ C
(‖σ‖L(p∗)′ (�) + ‖w‖p∗–1

Lp∗ (�)

)‖v‖
W 1,−→p

0 (�)

for all v, w ∈ W 1,−→p (�). It turns out that

∥
∥Nh(w)

∥
∥

W –1,−→p ′ (�)
≤ C

(‖σ‖L(p∗)′ (�) + ‖w‖p∗–1
L(p∗)(�)

)
, ∀w ∈ W 1,−→p

0 (�).

By Hölder’s inequality, we see that

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

qi

Lqi (�)
≤ |�|

pi–qi
pi

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

qi

Lpi (�)
, ∀u ∈ W 1,−→p

0 (�), i = 1, . . . , N , (2.2)
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where |�| denotes the Lebesgue measure of �. This ensures the continuous embedding
W 1,−→p

0 (�) ⊂ W 1,−→q
0 (�), guaranteeing that the sum in (2.1) is well defined on W 1,−→p

0 (�). It

follows that the operator A : W 1,−→p
0 (�) → W –1,−→p ′ (�) expressed by (2.1) is well defined and

bounded.
Standard arguments relying on assumption (H1) and Lebesgue’s dominated conver-

gence theorem ensure that the functional J : W 1,−→p
0 (�) → R in (1.6) is Gâteaux differ-

entiable and its differential J ′ satisfies J ′ = A. Therefore the operator A : W 1,−→p
0 (�) →

W –1,−→p ′ (�) introduced in (2.1) is a potential operator with the potential given by the func-
tional J : W 1,−→p

0 (�) →R in (1.6).

We claim that the functional J : W 1,−→p
0 (�) →R in (1.6) is coercive. Towards this, we note

that assumption (H2)ξ ,α , with ξ = μa∗, a∗ = min{agi : 1 ≤ i ≤ N}, α = p–, and (1.5) imply

∫

�

H
(
x, u(x)

)
dx ≤ c1

(‖u‖p–

Lp– (�) + |�|)

≤ c1

(

μ–1
N∑

i=1

1
pi

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

p–

Lpi (�)
+ |�|

)

≤ c1

(

μ–1
N∑

i=1

1
pi

(∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi

Lpi (�)
+ 1

)

+ |�|
)

.

Then, in view of (1.6), (2.2), and Gi(t) ≥ agi t for all t ≥ 0 and i = 1, . . . , N , we are led to

J(u) ≥
N∑

i=1

agi

pi

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi

Lpi (�)
–

N∑

i=1

1
qi

|�|
pi–qi

pi

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

qi

Lpi (�)

– c1

(

μ–1
N∑

i=1

1
pi

(∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi

Lpi (�)
+ 1

)

+ |�|
)

, ∀u ∈ W 1,−→p
0 (�).

Since qi < pi for all i = 1, . . . , N and c1 < μa∗, we obtain that J coercive.
We have checked all the hypotheses required to apply Theorem 1.1 to the functional

J in (1.6). As a consequence, according to Definition 1.1, the existence of a generalized
variational solution to problem (1.2) with A given in (2.1) is established. This is just the
stated result for the original problem (1.4), thus completing the proof of Theorem 1.2.

3 Generalized variational solutions for competing Finsler operator
In this section, we prove the existence of generalized variational solutions for problem
(1.7) by Theorem 1.3, i.e., we present the proof of Theorem 1.3.

We apply Theorem 1.1 taking E = W 1,p
0 (�) and A : W 1,p

0 (�) → W –1,p′ (�) given by

Au = –div
(

g
(

1
p

Fp(∇u)
)

Fp–1(∇u)(∇F)(∇u)
)

+ div
(
Fq–1(∇u)(∇F)(∇u)

)
– h(·, u), ∀u ∈ W 1,p

0 (�).
(3.1)

Observe that problem (1.7) can be written as the operator equation (1.2) with A in (3.1).
By Hölder’s inequality, we see that

∥
∥F(∇u)

∥
∥q

Lq(�) ≤ |�| p–q
p

∥
∥F(∇u)

∥
∥q

Lp(�), ∀u ∈ W 1,p
0 (�).
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Since for the function F there exist two constants 0 < a < b < +∞ such that a|ξ | ≤ F(ξ ) ≤
b|ξ | for all ξ ∈ R

N , the operator –Qg
p + Qq is well defined, continuous, and bounded on

W 1,p
0 (�).
The Carathéodory function h(x, t) entering equation (1.7) determines the Nemytskij op-

erator Nh : W 1,p
0 (�) → W –1,p′ (�) by

Nh(u) = h
(·, u(·)) for all u ∈ W 1,p

0 (�).

Assumption (H1), Hölder’s inequality, and Sobolev embedding theorem imply that there
is a constant C > 0 such that

∫

�

∣
∣h

(
x, w(x)

)
v(x)

∣
∣dx ≤

∫

�

∣
∣σ (x)

∣
∣v(x) dx + b

∫

�

∣
∣w(x)

∣
∣p∗–1v(x) dx

≤ C
(‖σ‖L(p∗)′ (�) + ‖w‖p∗–1

Lp∗ (�)

)‖∇v‖Lp(�)

for all v, w ∈ W 1,p(�). Hence we find the estimate

∥
∥Nh(w)

∥
∥

W –1,p′ (�) ≤ C
(‖σ‖L(p∗)′ (�) + ‖w‖p∗–1

Lp∗ (�)

)
, ∀w ∈ W 1,p

0 (�). (3.2)

We infer from (3.2) that the operator Nh : W 1,p
0 (�) → W –1,p′ (�) is well defined and

bounded. Taking into account (3.1), it follows that the operator A = –Qg
p + Qq – Nh is

well defined and bounded from W 1,p
0 (�) to W –1,p′ (�).

We are going to show that the operator A in (3.1) is potential. To this end, we define the
functional J : W 1,p

0 (�) →R by

J(u) =
∫

�

G
(

1
p

Fp(∇u)
)

dx –
1
q

∫

�

Fq(∇u) dx –
∫

�

H
(
x, u(x)

)
dx (3.3)

for all u ∈ W 1,p
0 (�), where

G(t) =
∫ t

0
g(x, s) ds

for a.e. x ∈ � and all t ∈R.
The boundedness of g implies the existence of a constant c > 0 with |G(t)| ≤ c(|t| + 1) for

all t ∈R. Then, arguing on the basis of assumption (H1), we can prove through Lebesgue’s
dominated convergence theorem that the functional J in (3.3) is Gâteaux differentiable
with the differential

〈
J ′(u), v

〉
=

∫

�

g
(

1
p

Fp(∇u)
)

Fp–1(∇u)F ′(∇u)∇v dx

–
∫

�

Fq–1(∇u)F ′(∇u)∇v dx

–
∫

�

h
(
x, u(x)

)
v(x) dx, ∀v ∈ W 1,p

0 (�).

(3.4)

By (3.1) and (3.4), we note that Au = J ′(u) for all u ∈ W 1,p
0 (�). As a consequence, we can

infer that A in (3.1) is a potential operator with the potential J given by (3.3).
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Now we focus on the coerciveness of the functional J in (3.3). Assumption (H2)ξ ,α , with
ξ = λ1ag

p and α = p, and (1.9) imply

∫

�

H
(
x, u(x)

) ≤ c1
(
λ–1

1
∥
∥Fp(∇u)

∥
∥p

Lp(�) + |�|).

Then, in view of (3.3) and G(t) ≥ agt for all t ≥ 0, we are led to

J(u) ≥
(

ag

p
– c1λ

–1
1

)
∥
∥F(∇u)

∥
∥p

Lp(�) –
1
q
|�| p–q

p
∥
∥F(∇u)

∥
∥q

Lp(�) – c1|�|

for all u ∈ W 1,p
0 (�). Since q < p and c1 < agλ1

p , we obtain that J is coercive.
All the hypotheses required to apply Theorem 1.1 to the functional J in (3.3) are fulfilled.

Then the existence of a generalized variational solution to problem Au = 0 with A given
in (3.1) is established. This completes the proof concerning the original problem (1.7).
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