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Abstract
In the study of singularly perturbed boundary problems with turning points, the
solution undergoes sharp changes near these points and exhibits various interior
phenomena. We employ the matching asymptotic expansion method to analyze and
solve a singularly perturbed boundary and interior layers problem with multiple
turning points, resulting in a composite expansion that fits well with the numerical
solution. The solution demonstrates a strong association with special functions,
which is verified by the theory of differential inequalities.
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1 Introduction
Many phenomena in biology, chemistry, engineering, physics, etc. can be described by
boundary value problems associated with various types of differential equations or sys-
tems. Boundary value problems often apply in mathematical physics, such as wave equa-
tions, Laplace equations [1], etc., where reaction–diffusion systems [2–4] can be applied
in biology, geology, physics (neutron diffusion theory), and ecology. In biology the moving
boundary model for oxygen diffusion in a sick cell explores the possibility of numerical ap-
proximations to different problems, which not only provide many numerical experiments,
but also comparisons with analytical solutions [5, 6].

For some boundary value problems, the singular perturbation method is also an effec-
tive approximation tool to solve its asymptotic solution, which is a seminumerical and
semianalytical method, such as the boundary layer function method [7], matched asymp-
totic expansion method, multiscale method, and WKB method [8]. These methods can
not only serve as a tools, but also provide valuable insights into studying general singular
perturbation boundary value problems.

The singular perturbation boundary value problem is a class of boundary value problems
with small parameters before the highest derivative. The most significant property of the
singularly perturbed boundary value problems is the reduction of the order of the equa-
tion as the perturbation parameter ε approaches 0. Singular perturbation problems with
turning points arise as mathematical models [9] for various physical phenomena. Many
problems in quantum physics belong to them, such as the famous Schrödinger equation.
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The turning point is the point that changes the stability of the problem. As the original
problem passes through the turning point, the properties of the function will change. In
classical mechanics, when the particle incident on these points, all the kinetic energy is
converted into potential energy, and the particle begins to turn and reflect back [10].

The turning point theory is a branch of the asymptotic theory of singular perturbation
problems. The “turning point” is an exception of this theory because its precise definition
is not an ordinary thing in general. Because of the particularity of the turning point, its
analysis requires a complete understanding of the asymptotic properties of the solutions of
differential equations. Turning points in singular perturbation have been a difficult prob-
lem, so that discussion of these problems was avoided in the early days of the study [11].
A word of explanation is perhaps appropriate. For a singularly perturbed boundary value
problem εy′′ = f (x, y, y′), in the case of a linear function f , a turning point is defined as a
point at which the coefficient of y′ vanishes. We also could extend this definition to non-
linear functions f by requiring that the partial derivative ∂f

∂y′ = fy′ vanishes at the turning
point in a rather large domain of variation of y and y′.

According to the location of turning point, it can be divided into the internal turning
point problem, boundary turning point problem, and multiturning point problem. Since
the stability of the problem changes around the turning point, the solutions often change
dramatically near these turning points. In the study of singularly perturbed boundary
value problems with turning points, the solution often changes sharply near the turn-
ing point and then presents some interior layer phenomena [12, 13], such as shock layer
[14, 15], nonmonotone transition layer, spike layer [16], etc.

There is another kind of situation that is different from the above cases, because the
rapid changes will be in the slope, and not in the value of the solution itself. This is usually
called the corner layer phenomenon. One of the most important applications for corner
layer problems is the singularly perturbed problem that combines combustion theory and
reaction–diffusion equations.

There are two main methods for solving singular perturbation problems, asymptotic and
numerical methods. Asymptotic methods can help us understand the qualitative behavior
of the problem, whereas numerical methods perform quantitative analysis. The most suit-
able method for boundary layer and interior layer problems is the matching asymptotic
expansion method [17], including the Prandtl matching principle, the Vandyke matching
principle, and the intermediate variable matching principle. The basic idea of the matched
asymptotic expansion method [18] is that although the asymptotic solution cannot be
given by the expansion of a single scale, it can be given by the expansion of different scales.
These solutions are valid in their regions, and the whole region can be represented by the
union of these regions. Then they are matched by the overlapping parts. Finally, the com-
posite asymptotic solution is obtained uniformly and efficiently in the whole region.

The method of upper and lower solutions has been developed for more than a century
with the aim of studying boundary value problems associated with ordinary and partial
differential equations of various types. Since 1893, Picard [19] introduced lower and up-
per solutions to prove the existence of solutions for separated boundary value problems
associated with scalar second-order ordinary differential equations. The theory was later
developed by Nagumo [20] in the 1930s into differential inequality theory and then devel-
oped by Jackson [21]. Howes [22] simplified their results. By using the comparison prin-
ciple and the monotone iterative technique [23, 24] combined with the method of upper
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and lower solutions, Cherpion et al. [25] obtained the existence and iterative methods of
extremal solution to the system. The method of upper and lower solutions and mono-
tone iteration technique are important and interesting tools to study the existence of the
solution of nonlinear problems.

The monotone iterative method is a constructive approach that yields both the maxi-
mum and minimum solutions to a differential equation problem. The primary objective of
the monotone iterative technique is to convert the nonlinear problem into a linear prob-
lem by the following specific steps: firstly, constructing an approximate solution sequence,
secondly, demonstrating that this sequence is monotonically bounded and possesses a
convergent limit, and, finally, proving that this limit corresponds to the solution of the
original problem.

The utilization of differential inequality techniques in the investigation of singular per-
turbation problems for ordinary and partial differential equations has a concise yet cap-
tivating history. Later, researchers have extended this theory with Neumann and Robin
boundary data and to second-order systems with fairly general types of boundary condi-
tions.

The requirements for the smoothness of the upper and lower solutions are extended
by allowing the upper and lower solutions to have a limited number of corner points. As
long as the upper and lower solutions satisfy a certain size relation at the corner points,
the theoretical system of second-order differential inequalities is basically formed. The
differential inequality theory has become an important means to deal with the singular
perturbation boundary value problem. Its characteristic is that it can not only prove the
existence of the solution of the perturbation problem, but also obtain an accurate esti-
mation of the perturbation solution by constructing appropriate inequalities. By using
differential inequality theory the results proved by other methods can be obtained con-
cisely and effectively. It can also deal with more complex problems and reveal the nature
of their progressive processes, and this research method has been found to be useful in
many different applications.

In the theory of differential inequalities in singular perturbation [26], the combustion
problem is briefly introduced. Scholars [27, 28] combine the matched asymptotic expan-
sion method with the corner layer problem to study this type of problem and then use
differential inequality theory to prove it.

In the Introduction to Perturbation Methods, Holmes used the matched asymptotic ex-
pansion method to study the famous corner layer problem, including the Prandtl match-
ing principle and the intermediate variable matching method. The intermediate variable
matching method is also mentioned by Holmes in studying Kummer functions. In gen-
eral, this method involves segmenting for matching and introducing a new scale variable
between the inner and outer layer variables before matching. Subsequently, Tingting et
al. [29] considered a broader singularly perturbed boundary and corner layer problem
with two turning points. By using the matched asymptotic expansion method scholars
[30] discussed a class of nonlinear singularly perturbed problems with changed position
of boundary layer and showed that the solution phenomena of singularly perturbed prob-
lems have full richness. When studying the oxygen diffusion problem, Boureghda [31] not
only analyzed the numerical scheme theoretically, but also provided some numerical ex-
periments with comparisons with analytical solution.
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In this paper, we consider a second-order singularly perturbed boundary and interior
layers problem with multiple turning points:

ε2n+1y′′ + (x – k)2n+1[(x + a)
(
x – (1 – a)

)
y′ – y

]
= 0, (1)

y(–1) = A, (2)

y(1) = B, (3)

where –1 ≤ x ≤ 1, 0 < a < 1, k ≤ –1, 0 < ε � 1, and A, B �= 0.
This is a singularly perturbed turning point problem with three parameters. The prop-

erties and behaviors of the solutions will change according to the different values of the
parameters, and the boundary and interior layer phenomena will appear from different
positions. For singularly perturbed problems with turning points, few studies analyze the
problem as a whole based on asymptotic solution and numerical fitting and prove the
consistent validity of the solution through differential inequality theory.

In this paper, by analyzing the phenomena of boundary and inner layers, we use a variety
of matching methods to solve them and then construct the upper and lower solutions to
verify the existence of solutions. Finally, we obtain a composite expansion with good nu-
merical solution fitting effect, which enabled us to have a deep understanding of this kind
of singularly perturbed boundary and interior layer problems with multiple parameters.

The paper is organized as follows. In Sect. 2, we divide the original problem into two
main cases for matching and solving. We construct the asymptotic solution of the original
problem and analyze the phenomena of the solution at the boundary layer and turning
points. We use the relevant matching method to get the asymptotic solutions that are uni-
formly valid. In particular, the solution has a strong correlation with two kinds of special
functions. In Sect. 3, we provide an estimate of the remainder and demonstrate the exis-
tence of solutions with the help of the generalized Nagumo theorem proposed by Howes.
We took advantage of the comparison principle and monotone iteration technique com-
bined with the upper and lower solution method to obtain the existence of the extreme
value solution. The requirements on the smooth degree of the upper and lower solutions
are extended. By constructing the upper and lower solutions in the well-ordered case the
theorem provides a way to prove the singular perturbation boundary and interior layers
problem with multiple turning points. In Sect. 4, we utilize the bvp4c solver in Matlab
to investigate the numerical solutions for various specific instances. To further empha-
size the significance of our research, we employ both asymptotic and numerical solutions.
Finally, in Sect. 5, we summarize some conclusions and possible areas of future research.

2 Main result
In this section, we discuss the singularly perturbed boundary and interior layers problems
with multiple turning points, which can be categorized into two-turning-point and three-
turning-point cases. During the solving process, we observe a strong correlation between
singular perturbation problems with turning points and special functions. To address this
issue, we employ the matched asymptotic expansion method to obtain a composite ex-
pansion within the corresponding interval.

To illustrate and further solve the problem, we will first scrutinize the potential phe-
nomena that may arise. This problem is characterized by three parameters n, a, and k.
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It is obvious that any alterations to these values will correspondingly impact the original
problem.

Firstly, since 0 < a < 1, we have –a < 0, 1 – a > 0, and –1 < –a < 0 < 1 – a < 1, and Eq. (1)
has two turning points x = –a and x = 1–a. The original interval is divided into three parts
by these two points. On these three intervals, the sign of the coefficient at y′ is > 0, < 0, and
> 0 respectively, that is, the algebraic sign of the coefficient of y′ changes at these two
points. So we guess that the corresponding interior layer phenomena will occur at these
points.

Secondly, since x ∈ [–1, 1] and k ≤ –1, when k < –1, (x – k)2n+1 > 0 is always true, and
when k = –1, x = –1 becomes a higher-order turning point of this problem. According to
the value of k, the original problem is divided into two- and three-turning-point problems.
The parameter k makes the discussion of the solution of the original problem different.

Finally, the parameter n determines the power of the small parameter ε and (x – k), as
well as the thickness of the boundary layer and interior layer. When n = 0 and k = –1,
x = –1 is a first-order turning point of the original problem, whereas when n ≥ 1 and
k = –1, x = –1 is a higher-order turning point of the original problem.

We seek the outer expansion in the form

y = y0(x) + ε2n+1y2n+1(x) + ε2(2n+1)y2(2n+1)(x) + · · · , (4)

where n = 0, 1, 2, . . . , and then substituting Eq. (4) into Eq. (1), we obtain

ε2n+1(y0
′′ + ε2n+1y2n+1

′′ + · · · ) + (x – k)2n+1[(x + a)
(
x – (1 – a)

)

× (
y0

′ + ε2n+1y2n+1
′ + · · · ) –

(
y0 + ε2n+1y2n+1 + · · · )] = 0.

By comparing the coefficients at of ε on the left and right sides, we obtain the reduced
problem

(x + a)
(
x – (1 – a)

)
y0

′ – y0 = 0, (5)

which is a first-order differential equation that can be determined with only one boundary
condition.

We commence by ascertaining the presence of boundary layers and interior layers. Ac-
cording to the previous analysis, the coefficient of y′ on (–1, –a) is > 0, and the layer phe-
nomenon appears near the left endpoint x = –1. The coefficient at y′ on (1 – a, 1) is also
> 0, so there is no layer phenomenon near the right endpoint x = 1. Since the coefficient
at y′ on (–a, 1 – a) is < 0, there is a layer phenomenon near the turning point x = 1 – a.
Therefore we speculate that the original problem exhibits boundary layer phenomenon
near x = –1 and interior layer phenomenon near x = 1 – a. The specific type of interior
layer phenomenon near x = 1 – a needs further analysis.

We hypothesize the presence of an interior layer phenomenon at the turning point
x = –a. However, our analysis reveals no corresponding layer phenomenon near x = –a.
We can confirm that the problem will not exhibit boundary layer phenomena near x = 1.
Therefore the reduced problem (5) satisfies condition (3). In addition, we can note that
y0 = 0 is also a solution of Eq. (5). Thus we obtain the equation

yR
0 =

B(1 + a)
a

x – (1 – a)
x + a

. (6)
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The presence of a singularity at the point x = –a is evident in this solution. To eliminate
this singularity and avoid subsequent complications, it is necessary to consider the pre-
vious analysis on layer phenomena classification. Consequently, we can derive the zero-
degree outer solution

y0 =

⎧
⎨

⎩
0, –1 ≤ x ≤ 1 – a,
B(1+a)

a
x–(1–a)

x+a , 1 – a < x ≤ 1.
(7)

The outer solution y0 is continuous, but it lacks differentiability at x = 1 – a. For this
reason, there is a corner layer at x = 1 – a. In general, the exact solution is not zero at
the turning point x = –a, so we guess that the spike layer appears at x = –a, that is, the
pulse state. At this time, we can find that y0(–1) = 0 �= A, which also confirms that the
boundary layer does appear at x = –1. In the following, we construct boundary, spike layer,
and corner layer expansions at x = –1, x = –a, and x = 1 – a, respectively. The matched
asymptotic expansion method is used to match them with the outer expansions so as to
obtain the uniformly valid composite expansions in the interval [–1, 1].

The solution is first analyzed and discussed at the point x = –a. Given the suspicion of
a spike layer phenomenon [32, 33] at this particular point, the behavior of the solution
within the interval (–1, 1 – a) can be described as follows:

lim
ε→0

y(x, ε) =

⎧
⎨

⎩
0, x ∈ (–1, 1 – a) – {–a},
s, x = –a,

where s �= 0. For a semilinear boundary value problem [32],

ε2y′′ = f (x)y′ + g(x, y),

y(–1, ε) = A, y(1, ε) = B,
(8)

where x = 0 is a turning point, that is, f (0) = 0. We assume that
(a) f (x) and g(x, y) are continuously differentiable on [–1, 1] and [–1, 1] ×R, respectively,

where x = 0 is the turning point, f (0) = 0, and there exists d > 0 such that 0 < –f ′(0) ≤ d.
(b) The reduced problem of Eq. (8) has solutions uL(x) and uR(x), which satisfy

u(x) =

⎧
⎨

⎩
uL(x), x ∈ [–1, 0],

uR(x), x ∈ [0, 1],

and there exists k > 0 such that gy(x, u(x)) > k for x ∈ [–1, 1].
(c) There exist u2 > u1 > uL(0) satisfying g(0, ui) = 0 and (–1)igy(0, ui) > 0, i = 1, 2,

g(0, y) < 0, y ∈ (u1, u2), and
∫ u2
θ

g(0, y) dy < 0, where θ ∈ [uL(0), u2). Then under the con-
dition uL(0) = uR(0), there exists d0 > 0 such that for all ε > 0 and d < d0, Eq. (8) has a
solution that exhibits the spike phenomenon around x = 0.

For Eq. (1) with f (x) = –(x – k)2n+1(x + a)(x – (1 – a) and g(x, y) = (x – k)2n+1y, we will
verify whether the pulse state occurs at x = –a; we can prove that f ′(–a) = –a–k > 0, where
k ≤ –1, so that this problem does not satisfy the spike layer existence theorem at x = –a.
Hence, when s = 0, indicating that f (–a) = 0, our focus lies in constructing boundary layer
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and corner layer expansions at x = –1 and x = 1 – a, respectively, with the intention of
subsequently matching them.

Remark 1 If problem (1)–(3) is divided into left and right problems according to x = –a
for analysis, then we can also obtain that there is no any layer phenomenon at x = –a and
f (–a) = 0.

Remark 2 It is worth noting that no matter k < –1 or k = –1, the boundary layer appears
near the left endpoint, but the specific equations of the boundary layer are completely dif-
ferent in these two cases, and the thickness of the boundary layer is also different. There-
fore it is necessary to discuss these cases separately.

2.1 Case 1. k < –1
We obtained the outer solution (7) for the original problem (1)–(3), but it could not sat-
isfy boundary condition (2)), and thus we need to construct the boundary layer solution
to correct it near x = –1. When k < –1, the coefficient at y′ is constant > 0, and we intro-
duce the stretched variable ξ = x+1

εv > 0. Denoting the inner solution by Y and making the
corresponding change of variables in Eq. (1), we get

ε2n+1–2vY ′′ +
(
εvξ – 1 – k

)2n+1[(
εvξ – 1 + a

)(
εvξ – 2 + a

)
)ε–vY ′ – Y

]
= 0, (9)

and the main part is

ε2n+1–2vY ′′ + (–1 – k)2n+1(–1 + a)(–2 + a))ε–vY ′ = 0.

From the principle of minimum degradation we obtain v = 2n + 1. We look for the asymp-
totic of the solution in the form of the inner expansion, and thus near the origin, the equa-
tion has the form

Y (ξ ) = Y0(ξ ) + ε2n+1Y1(ξ ) + · · · . (10)

Then substituting Eq. (10) into Eq. (9) and comparing the coefficients of O( 1
ε2n+1 ) on the

left and right sides, we get

Y0
′′ + (–1 – k)2n+1(–1 + a)(–2 + a)Y0

′ = 0. (11)

Let m = (–1 – k)2n+1(–1 + a)(–2 + a) > 0. Then Eq. (11) becomes

Y0
′′ + mY0

′ = 0,

so thatwe obtain

Y0 = c1 + c2 exp(–mξ ), (12)

where c1, c2 are arbitrary constants, and Y (ξ ) satisfies condition (2). When x = –1 and
ξ = 0, we obtain Y0(0) = A and c1 + c2 = A. This must match with the outer solution. The
matching condition by the matching asymptotic expansion method is Y0(+∞) = y0(–1+),
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and through matching we have that c1 = 0. Therefore we determine the boundary layer
solution

Y (ξ ) = A exp
[
–(–1 – k)2n+1(–1 + a)(–2 + a)ξ

]
+ · · · , (13)

where ξ = x+1
ε2n+1 > 0.

To determine the solution in the corner layer at x = 1 – a, we introduce the corner-layer
stretched variable η = x–(1–a)

εv . We denote the solution in this region by Ỹ . Substituting it
into Eq. (1), we obtain

ε2n+1–2vỸ ′′ +
(
εvη + 1 – a – k

)2n+1

× [(
εvη + 1 – a + a

)(
εvη + (1 – a) – (1 – a)

)
ε–vỸ ′ – Ỹ

]
= 0,

(14)

and the main part is

ε2n+1–2vỸ ′′ + (1 – a – k)2n+1ηỸ ′ – Ỹ = 0.

The distinguished limit in this case occurs when v = 2n+1
2 . Unlike our previous assumption,

we now consider the asymptotic expansion of corner solution

Ỹ (η) = y0(1 – a) + εmỸ0 + · · · . (15)

For this problem, y0(1 – a) = 0, and the constant m will be determined from the matching.

Remark 3 Assuming the previous asymptotic expansion of corner solution, that is,

Ỹ (η) = Ỹ00 + εmỸ0 + ε2mỸ1 + · · · ,

we can also get the first term Ỹ00 = 0. We will verify that the unknown constant m = 2n+1
2 .

Expansion (15) is the unique form of the asymptotic expansion of the corner layer solution,
because the outer solution is continuous but nondifferentiable at the corner point. The
solution from the corner-layer region should provide a smooth transition between these
linear functions.

Thus, substituting Eq. (15) into Eq. (14) and comparing the coefficients of O(εm), we
have

Ỹ ′′
0 + (1 – a – k)2n+1ηỸ ′

0 – Ỹ0 = 0. (16)

It is possible to solve this equation using power series methods. However, a simpler way
is to notice that Ỹ0 = η is a particular solution. Then using the method of order reduction,
we find that the general solution is

Ỹ0 = Cη – D
(

exp

(
–

(1 – a – k)2n+1

2
η2

)

+ (1 – a – k)2n+1η

∫ η

0
exp

(
–

(1 – a – k)2n+1

2
s2

)
ds

)
,

(17)

where C and D are arbitrary constants.
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Remark 4 Since the error function [34] is defined as erf(x) = 2√
π

∫ x
0 e–y2 dy, Eq. (17) is

equivalent to the expression without integration.

Then the corner layer solution is

Ỹ (η) ∼ εm
[

Cη – D
(

exp

(
–

(1 – a – k)2n+1

2
η2

)

+ (1 – a – k)
2n+1

2

√
π

2
erf

[
(1 – a – k)

2n+1
2 η√

2

])]
,

(18)

Now we will use the matching asymptotic expansion method to match the corner solu-
tion with the outer solution, whereas in the previous part, the boundary layer analysis and
matching were performed simultaneously. However, this approach is not applicable here
as the matching process in this layer exhibits slight variations that warrant further con-
sideration. To facilitate the matching procedure, we introduce the intermediate variable
xη = x–(1–a)

εp , where 0 < p < 2n+1
2 . The outer solution (7) can be reformulated in this variable

as

y0 =

⎧
⎨

⎩
0, xη < 0,
B(1+a)

a
xηεp

xηεp+1 , xη > 0,

Since xηε
p ∈ (0, a) ⊂ (0, 1), 1 + xηε

p ∈ (1, a + 1), and thus

xηε
p

1 + xηεp = 1 –
1

1 + xηεp = xηε
p –

(
xηε

p)2 + · · · ,

we have

y0 ∼
⎧
⎨

⎩
0, xη < 0,
B(1+a)

a xηε
p, xη > 0,

(19)

the variable a ∈ (0, 1) suggests that as a approaches 0, the approximate effect is enhanced.
Subsequently, we will conduct matching verification by comparing the fitting effect of both
asymptotic and numerical solutions. Since

∫ +∞
0 exp(– t2

2 ) dt =
√

π
2 , we rewrite Eq. (18) as

follows:

Ỹ ∼
⎧
⎨

⎩
εp+m– 2n+1

2 xη(C + D
√

π (1–a–k)2n+1

2 ), xη < 0,

εp+m– 2n+1
2 xη(C – D

√
π (1–a–k)2n+1

2 ), xη > 0.
(20)

To match Eqs. (19) and (20), we must have m = 2n+1
2 . In this case, we obtain C = B(1+a)

2a
and D = – B(1+a)

a
√

2π (1–a–k)2n+1
by the intermediate variable matching principle. The final step

involves consolidating these expansions into a composite expression. This is done in the
usual way of adding the expansions together and then subtracting the common parts. The
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construction of a composite expansion for x ∈ [–1, 1 – a] is

y =
B(1 + a)

2a
[
x – (1 – a)

]
+ ε

2n+1
2

B(1 + a) exp(– (1–a–k)2n+1

2
[x–(1–a)]2

ε2n+1 )

a
√

2π (1 – a – k)2n+1

+
B(1 + a)

2a
[
x – (1 – a)

]
erf

[
(1 – a – k)

2n+1
2√

2
x – (1 – a)

ε
2n+1

2

]

+ A exp

(
–

(–1 – k)2n+1(–1 + a)(–2 + a)(x + 1)
ε2n+1

)
+ · · · ,

(21)

and for x ∈ (1 – a, 1],

y =
B(1 + a)

2a
[
x – (1 – a)

]
+ ε

2n+1
2

B(1 + a) exp(– (1–a–k)2n+1

2
[x–(1–a)]2

ε2n+1 )

a
√

2π (1 – a – k)2n+1

+
B(1 + a)

2a
[
x – (1 – a)

]
erf

[
(1 – a – k)

2n+1
2√

2
x – (1 – a)

ε
2n+1

2

]

+
B(1 + a)

a
x – (1 – a)

x + a
–

B(1 + a)
a

(
x – (1 – a)

)
+ · · · .

(22)

Remark 5 The error function was ultimately employed to represent the composite solu-
tion, not only for the convenience of numerical fitting, but also to enhance its clarity and
intuitive presentation.

Now analyzing the properties of the corner point x = 1 – a, we find that

lim
x→(1–a)+

f
(
x+)

= ε
2n+1

2
B(1 + a)

a
√

2π (1 – a – k)2n+1
,

lim
x→(1–a)–

f
(
x–)

= ε
2n+1

2
B(1 + a)

a
√

2π (1 – a – k)2n+1

+ A exp

(
–

(–1 – k)2n+1(–1 + a)(–2 + a)(2 – a)
ε2n+1

)
,

and as ε approaches 0, limx→(1–a)– f (x–) = limx→(1–a)+ f (x+) = 0. By the definition of the
derivative we obtain

f ′
–(1 – a) = lim

x→(1–a)–

f (x) – f (1 – a)
x – (1 – a)

=
B(1 + a)

2a
,

f ′
+(1 – a) = lim

x→(1–a)+

f (x) – f (1 – a)
x – (1 – a)

=
B(1 + a)

2a
,

and then f ′
–(1 – a) = f ′

+(1 – a). Since the left and right derivatives exist and are equal, it is
known that y(x, ε) is continuous and differentiable at x = 1 – a. Thus Eqs. (21) and (22) are
the composite expansions over the entire interval [–1, 1].

2.2 Case 2. k = –1
In this case, the original problem becomes

ε2n+1y′′ + (x + 1)2n+1[(x + a)
(
x – (1 – a)

)
y′ – y

]
= 0, (23)
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and (x + 1)2n+1 = 0 when x = –1. Then x = –1 is not only a boundary layer point, but also a
boundary turning point. Therefore there may be a multilayer phenomenon near this point;
at least, the boundary layer solution will be different from Case 1.

In this case the outer expansion is still (7). Based on the preceding analysis, we investi-
gate the possibility of the boundary layer. This is done by introducing the boundary-layer
coordinate ξ = x+1

εv , that is, x = εvξ – 1. Also, as in the previous case, we denote by Y the
solution in the layer. Now substitution of it into Eq. (23) yields

ε2n+1–2vY ′′ +
(
εvξ

)2n+1[(
εvξ – 1 + a

)(
εvξ – 1 – (1 – a)

)
ε–vY ′ – Y

]
= 0. (24)

By sorting it out we get

ε2n+1–2vY ′′ + ε2nvξ 2n+1(εvξ – 1 + a
)(

εvξ – 2 + a
)
Y ′ – ε(2n+1)vξ 2n+1Y = 0, (25)

and the balance in this layer is between these three terms.
We first match 2n + 1 – 2v = 2nv and get v = 2n+1

2n+2 . Then ξ1 = x+1

ε
2n+1
2n+2

> 0. The appropriate
expansion for Y is

Y (ξ1) = Y0(ξ1) + ε
2n+1
2n+2 Y1(ξ1) + · · · . (26)

Substituting Eq. (26) into Eq. (25) and comparing the same power coefficients of ε, we get

Y0
′′ + ξ1

2n+1(–1 + a)(–2 + a)Y0
′ = 0, (27)

and then we obtain Y0
′′ + qξ1

2n+1Y0
′ = 0 by noting q = (–1 + a)(–2 + a) > 0. The solution is

Y0 = b0 + a0

∫ ξ1

0
exp

(
–

q
2n + 2

τ 2n+2
)

dτ . (28)

Now we match 2n+1–2v = (2n+1)v and get v = 2n+1
2n+3 . Then ξ2 = x+1

ε
2n+1
2n+3

> 0. The appropriate

expansion for Ȳ is

Ȳ (ξ2) = Ȳ0(ξ2) + ε
2n+1
2n+3 Ȳ1(ξ2) + · · · , (29)

and then we get

ξ2
2n+1(–1 + a)(–2 + a)Ȳ ′

0 = 0. (30)

The general solution of the latter is Ȳ0 = C, where C is an arbitrary constant.
Because of 2n+1

2n+3 < 2n+1
2n+2 , ξ1 is the boundary layer extension variable, and ξ2 is the inter-

mediate layer extension variable. We find that the boundary layer solution and the outer
solution can be matched directly, so we guess that the intermediate layer solution C = 0.
After the matching verification of the intermediate layer solution and the outer solution,
we get C = 0, that is, there is no intermediate layer in this situation. So Eq. (28) must
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match with the outer solution. The matching condition is Y0(+∞) = y0(–1+), and Eq. (28)
also satisfies the boundary condition (2). Then we have

0 = A + a0

∫ +∞

0
exp

(
–

q
2n + 2

τ 2n+2
)

dτ . (31)

By the definition of gamma function, 	(x) =
∫ +∞

0 tx–1 exp(–t) dt, we obtain a0 =
–q

1
2n+2 A(2n+2)

2n+1
2n+2

	( 1
2n+2 )

. Then we determine the following boundary layer solution:

Y0 = A –
q

1
2n+2 A(2n + 2)

2n+1
2n+2

	( 1
2n+2 )

∫ ξ

0
exp

(
–

q
2n + 2

τ 2n+2
)

dτ . (32)

In this case, it is easy to obtain the corner layer solution as

Ỹ ∼ ε
2n+1

2

[
B(1 + a)

2a
η +

B(1 + a)
a
√

2π (2 – a)2n+1

(
exp

(
–

(2 – a)2n+1

2
η2

)

+ (2 – a)2n+1η

√
π

2(2 – a)2n+1 erf
[

(2 – a)
2n+1

2 η√
2

])]
.

(33)

Similarly, the determination of the first-term composite expansion of the solution over
the entire interval can be inferred from the aforementioned equations.

The inclusion of integrals in the form of solutions is not recommended, as mentioned
in Remark 5. By utilizing incomplete gamma functions and their related properties [35]
we can transform the solution from an integral form into a nonintegral form. We get

Y0 =
A

	( 1
2n+2 )

	

(
1

2n + 2
,

qξ 2n+2

2n + 2

)
= A –

A
	( 1

2n+2 )
γ

(
1

2n + 2
,

qξ 2n+2

2n + 2

)
. (34)

Remark 6 Since
∫ ξ

0 exp(– q
2τ 2) dτ =

√
π

2

√
2
q erf(

√
q
2

x+1

ε
1
2

) when n = 0 and
∫ ξ

0 exp(– q
2n+2τ 2n+2) dτ = 1

2n+2 ( 2n+2
q ) 1

2n+2 γ ( 1
2n+2 , qξ2n+2

2n+2 ) for n ≥ 1, 	( 1
2 ) =

√
π , and γ ( 1

2 , x) =√
πerf(

√
x), the error function is one of the incomplete gamma functions, that is, the case

n ≥ 1 includes the case n = 0.

Therefore, for x ∈ [–1, 1 – a], the first-term composite expansion without integral form
of the solution over the entire interval is

y =
B(1 + a)

2a
[
x – (1 – a)

]
+ ε

2n+1
2

B(1 + a) exp(– (2–a)2n+1

2
[x–(1–a)]2

ε2n+1 )

a
√

2π (2 – a)2n+1

+
B(1 + a)

2a
[
x – (1 – a)

]
erf

[
(2 – a)

2n+1
2√

2
x – (1 – a)

ε
2n+1

2

]

+ A –
A

	( 1
2n+2 )

γ

(
1

2n + 2
,

(–1 + a)(–2 + a)
2n + 2

(x + 1)2n+2

ε2n+1

)
+ · · ·

=
B(1 + a)

2a
[
x – (1 – a)

]
+ ε

2n+1
2

B(1 + a) exp(– (2–a)2n+1

2
[x–(1–a)]2

ε2n+1 )

a
√

2π (2 – a)2n+1

(35)
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+
B(1 + a)

2a
[
x – (1 – a)

]
erf

[
(2 – a)

2n+1
2√

2
x – (1 – a)

ε
2n+1

2

]

+
A

	( 1
2n+2 )

	

(
1

2n + 2
,

(–1 + a)(–2 + a)
2n + 2

(x + 1)2n+2

ε2n+1

)
+ · · · ,

and when x ∈ (1 – a, 1],

y =
B(1 + a)

2a
[
x – (1 – a)

]
+ ε

2n+1
2

B(1 + a) exp(– (2–a)2n+1

2
[x–(1–a)]2

ε2n+1 )

a
√

2π (2 – a)2n+1

+
B(1 + a)

2a
[
x – (1 – a)

]
erf

[
(2 – a)

2n+1
2√

2
x – (1 – a)

ε
2n+1

2

]

+
B(1 + a)

a
x – (1 – a)

x + a
–

B(1 + a)
a

(
x – (1 – a)

)
+ · · · .

(36)

Remark 7 The incomplete gamma function studied in this section is related to the con-
fluent hypergeometric function [36]. It has received a great deal of attention because
the function has been found to have some rather interesting properties. Since γ (s, z) =
zs

s M(s, s + 1, –z), Eq. (34) can also be written as

Y0 = A –
A(2n + 2)
	( 1

2n+2 )

[
(–1 + a)(–2 + a)

2n + 2
(x + 1)2n+2

ε2n+1

] 1
2n+2

× M
(

1
2n + 2

2n + 3
2n + 2

, –
(–1 + a)(–2 + a)(x + 1)n+2

(2n + 2)ε2n+1

)
.

3 The existence of solutions and estimation of the remainder
In this section, by using the generalized Nagumo theorem proposed by Howes and the
monotone iteration technique combined with the upper and lower solution we obtain the
existence of the solutions and estimate the remainder.

In recent years, the theory of differential inequalities has become an important means to
deal with (non)linear singular perturbation problems. It can not only prove the existence
of perturbation problems, but also obtain accurate estimates of perturbation solutions by
constructing appropriate upper and lower solutions.

Considering first the general Dirichlet problem (37)

x′′ = f
(
t, x, x′), a < t < b,

x(a) = A, x(b) = B,
(37)

where f is a continuous function on [a, b] × R2, the method is based on the observation
that there exist smooth functions α(t) and β(t) such that

α(t) ≤ β(t),

α(a) ≤ A ≤ β(a), α(b) ≤ B ≤ β(b),

α′′ ≥ f
(
t,α,α′), β ′′ ≤ f

(
t,β ,β ′).

(38)

Theorem 1 [15] Assume that there exist upper and lower solution functions α(t) and β(t)
belonging to C(2) on [a, b] with property (38) and that the function f satisfies the generalized
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Nagumo condition. Then the Dirichlet problem (37) has a solution x = x(t) belonging to
C(2)([a, b]) that satisfies α(t) ≤ x(t) ≤ β(t) for t ∈ [a, b].

If α and β belong to C(2) on [a, b], then as long as α′′ ≥ f (t,α,α′) and β ′′ ≤ f (t,β ,β ′) on
every subinterval (ti–1, ti) and α′(t–) ≤ α′(t+) and β ′(t–) ≥ β ′(t+) for all t ∈ (a, b), then the
corresponding result is valid.

The generalized Nagumo condition is that there exists a continuous function ϕ(s) > 0 on
[0, +∞) such that for a ≤ t ≤ b, α(t) ≤ y ≤ β(t), and |y′| < +∞, we have |f (t, y, y′)| ≤ ϕ(|y′|).
If ϕ(u) is a positive continuous function of u(≥ 0) such that

∫ ∞
0

udu
ϕ(u) = +∞, then ϕ(s) is a

Nagumo function.
The above theorem has been generalized in several directions. Cherpion et al. [37]

proved an existence result in the well-ordered case and nonwell-ordered case. For well-
ordered cases, the well-ordered lower and upper solutions are given by the maximum
principle, whereas for nonwell-ordered cases, the lower and upper solutions in the re-
versed order are given by the antimaximum principle. They approximate the sequence by
replacing global Lipschitz conditions with local Lipschitz conditions and adding Nagumo
conditions. Then the existence of convergent sequences is obtained again by replacing
two-sided Nagumo conditions with one-sided conditions. The monotone iteration tech-
nology has been paid attention to and developed continuously. De Coster et al. studied the
monotone iteration technology in boundary value problems.

In addition, the method of proof requires a growth restriction. Howes employed the
Nagumo–Jackson theorem as well as an extended version of the lower and upper solution.
Two sets of monotone sequences are defined in the proof. According to the continuity of
the original problem and the monotonic boundedness of the sequences, it is easy to show
that they are uniformly convergent. The minimum and maximum solutions are found, and
the contraction mapping principle shows that the solutions are unique.

Theorem 1 extends the Nagumo–Jackson theorem described above by allowing the
bounding functions α and β to have finitely many “corners”, provided that the correct in-
equalities are satisfied at the corner points ti. Its proof is an easy modification of the given
one if we note that the maximum of a finite number of lower solutions (i.e., functions sat-
isfying the α-differential inequalities) is also a lower solution, whereas the minimum of a
finite number of upper solutions (i.e., functions satisfying the β-differential inequalities)
is an upper solution.

This result allows the upper and lower solution functions to have some type of “orner
point”, so that if {α1, . . . ,αm}({β1, . . . ,βM}) is a lower (upper) solution function, then
max{α1, . . . ,αm} (min{β1, . . . ,βM}) is also a lower (upper) solution function.

We use the ideas introduced and developed in the above paper to prove other problems.
Consider the corner layer behavior of a general second-order nonlinear boundary value
problem

εy′′ = f
(
t, y, y′), a < t < b,

y(a) = A, y(b) = B,
(39)

assuming the following conditions:
(H1) f , fy, fy′ ∈ C(D(u)), where D(u) is the same as in the following definition; fy′ (t, y, y′)

is bounded in a compact subset of [a, b] × R, and for (t, y) ∈ [a, b] × R, we have
f (t, y, y′) = O(y′2), |y′| → +∞.
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(H2) The degenerate equation f (t, u, u′) = 0 has a pair of solutions u = uL(t) ∈ C2[a, t0]
and u = uR(t) ∈ C2[t0, b] satisfying uL(t0) = uR(t0), uL

′(t0) �= uR
′(t0), uL(a) = A, and

uR(b) = B, where t0 ∈ (a, b), and we let

u(t) =

⎧
⎨

⎩
uL(t), t ∈ [a, t0],

uR(t), t ∈ (t0, b].

Definition 1 Let constants δ2 > 0 and δ3 > 0 be such that fy′ (t, y, y′) ≥ 0 in D(u) ∩ ([t0 –
δ2
2 , t0] × R2) and fy′ (t, y, y′) ≤ 0 in D(u) ∩ ([t0, t0 + δ2

2 ] × R2), where

D(u) =
{(

t, y, y′)|a ≤ t ≤ b, t �= t0,
∣
∣y – u(t)

∣
∣ ≤ δ3,

∣
∣y′∣∣ < +∞}

.

Then the solution u = u(t) of the degenerate equation f (t, u, u′) = 0 of Eq. (39) is said to be
locally weakly stable around t = t0 ∈ (a, b).

Definition 2 Suppose there exist constants m > 0 and δ1 > 0 such that the function
h(t, y) = f (t, y, u′) has a partial derivative of order 2q + 1 in D0(u) = {(t, y)|a ≤ t ≤ b, t �=
t0, |y – u(t)| ≤ δ1} with respect to y, satisfying

∂ j
yh

(
t, u(t)

)
=

∂ jh(t, u(t))
∂yj ≡ 0, t ∈ [

a, t0) ∪ (t0, b
]
, 0 ≤ j ≤ 2q,

and

∂2q+1
y h(t, y) ≥ m > 0, (t, y) ∈ D0(u).

Then the solution u = u(t) ∈ C2[a, b] of the degenerate equation f (t, u, u′) = 0 of Eq. (39) is
said to be (Iq) stable on [a, b].

If [H1] and [H2] are satisfied, and the reduced solution u = u(t) is locally weakly stable
near t = t0 and (Iq) stable on [a, b], then we assume that u′

L(t0) < u′
R(t0). To estimate the

solution using the theory of differential inequalities, it is necessary to construct the lower
and upper solution functions

α(t, ε) = u(t) – Cε
1

2q+1

and

β(t, ε) = u(t) + V (t, ε) + Cε
1

2q+1 ,

where the undetermined positive function V (t, ε) is the inner function operating near
t = t0, and C is the undetermined constant. (The u′

L(t0) > u′
R(t0) also has a correspond-

ing result.) Now we prove the problem studied in this paper. We only prove the case of
n = 0, that is,

εy′′ + (x – k)
[
(x + a)

(
x – (1 – a)

)
y′ – y

]
= 0, (40)
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y(–1) = A, y(1) = B. (41)

For n = 1, 2, . . . , the same result can be proved.

Theorem 2 With Nagumo condition satisfied, there exists a sufficiently small positive
number ε0 such that for every 0 < ε ≤ ε0, problem (40)–(41) has a solution y(x, ε) with
the boundary layer property at x = –1 and the corner layer property at x = 1 – a, and as ε

approaches 0, we have

∥∥y(x, ε) – Y0(x, ε)
∥∥ ≤ cε

on [–1, 1], where

Y0(x, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

V (x, ε) + A exp(– (–1–k)(–1+a)(–2+a)(x+1)
ε

), k < –1, –1 ≤ x < 1 – a,

V (x, ε) + B(1+a)
a

x–(1–a)
x+a

– B(1+a)
a (x – (1 – a)), k < –1, 1 – a < x ≤ 1,

Y0(x, ε) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V (x, ε) + A – A
	( 1

2 )

× γ ( 1
2 , (–1+a)(–2+a)

2
(x+1)2

ε
), k = –1, –1 ≤ x < 1 – a,

V (x, ε) + B(1+a)
a

x–(1–a)
x+a

– B(1+a)
a (x – (1 – a)), k = –1, 1 – a < x ≤ 1,

where

V (x, ε) =
B(1 + a)

2a
[
x – (1 – a)

]
+ ε

1
2

B(1 + a) exp(– (1–a–k)
2

[x–(1–a)]2

ε
)

a
√

2π (1 – a – k)

+
B(1 + a)

2a
[
x – (1 – a)

]
erf

[
(1 – a – k)

1
2√

2
x – (1 – a)

ε
1
2

]
.

Proof A differentiable function is continuous and bounded on any closed interval. From

f
(
x, y, y′) =

(x – k)[y – (x + a)(x – (1 – a))y′]
ε

we have

∣∣f
(
x, y, y′)∣∣ ≤

∣
∣∣
∣
(x – k)y

ε

∣
∣∣
∣ +

∣
∣∣
∣
(x – k)(x + a)(x – (1 – a))y′

ε

∣
∣∣
∣.

There exists M > 0 such that |F(x, y, y′)| ≤ M(1 + |y′|), and under the generalized Nagumo
condition,

∫ ∞
0

udu
1+|u| =

∫ ∞
0

udu
1+u =∞.

Since the coefficient at y′ in Eq. (40) changes sign at the points x = –a, 1 – a, the left
boundary layer has little influence on the right solution by the boundary layer function
method. Moreover, from the previous analysis we know that the point x = –a is a turning
point that has little influence on the original problem, and the value at this point can only
be 0, that is, y(–a) = 0, and a corner layer is generated near x = 1 – a. Then we divide the
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problem into left and right problems, as well as the interval into left and right intervals,
that is, to [–1, –a] and [–a, 1].

The left problem is

εy′′
L + (x – k)

[
(x + a)

(
x – (1 – a)

)
y′

L – yL
]

= 0,

yL(–1) = A, yL(–a) = 0,

and the right problem is

εy′′
R + (x – k)

[
(x + a)

(
x – (1 – a)

)
y′

R – yR
]

= 0,

yR(–a) = 0, yR(1) = B.

Then the left problem is a general singular perturbation problem with a left boundary
layer, and the right problem is a singular perturbation problem with a corner layer.

For the left problem, we can construct lower and upper solutions as follows:

αL(x, ε) = A exp

(
–

(–1 – k)(–1 + a)(–2 + a)(x + 1)
ε

)
– γ ε,

βL(x, ε) = A exp

(
–

(–1 – k)(–1 + a)(–2 + a)(x + 1)
ε

)
+ γ ε,

so that, when x ∈ [–1, –a], as long as γ > 0, all verification conditions can be met. For ε

small enough, the left problem has a solution yL(x, ε) on [–1, –a] that satisfies αL(x, ε) ≤
yL(x, ε) ≤ βL(x, ε), and |yL(x, ε) – A exp(– (–1–k)(–1+a)(–2+a)(x+1)

ε
)| = O(ε) as ε approaches 0.

For the right problem,

F
(
x, y, y′) = (x – k)

[
yR – (x + a)

(
x – (1 – a)

)
y′

R
]
,

since the solution of the reduced problem at this time is locally weakly stable near x = 1–a,
that is, there is an arbitrarily small constant δ1 > 0 such that Fy′ (x, y, y′) ≥ 0 in [1 – a –δ1, 1 –
a] and Fy′ (x, y, y′) ≤ 0 in [1 – a, 1 – a + δ1]. Then the reduced solution is (I0) stable on the
interval [–a, 1], that is, there exists constants m > 0 and δ2 > 0 such that F(x, u, u′) = 0 and
Fy(x, y, u′) = x – k ≥ –a – k > 0 on D0(u) : {(x, y)| – a < x < 1, x �= 1 – a, |yR – u(x)| ≤ δ2}, so
that the lower and upper solutions to the right problem can be constructed based on these
properties.

When uL
′(1 – a) < uR

′(1 – a), that is, B > 0, we have

αR(x, ε) =

⎧
⎨

⎩
–γ ε, –a ≤ x < 1 – a,
B(1+a)

a
x–(1–a)

x+a – γ ε, 1 – a < x ≤ 1,

βR(x, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

V (x, ε) + γ ε, –a ≤ x < 1 – a,

V (x, ε) + B(1+a)
a

x–(1–a)
x+a

– B(1+a)
a (x – (1 – a)) + γ ε, 1 – a < x ≤ 1,
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As long as γ ≥ 2B(1+a)
(1–a–k)a , all conditions are established. Similarly, when uL

′(1–a) > uR
′(1–a),

that is, when B < 0, we have

αR(x, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

V (x, ε) – γ ε, –a ≤ x < 1 – a,

V (x, ε) + B(1+a)
a

x–(1–a)
x+a

– B(1+a)
a (x – (1 – a)) – γ ε, 1 – a < x ≤ 1,

βR(x, ε) =

⎧
⎨

⎩
γ ε, –a ≤ x < 1 – a,
B(1+a)

a
x–(1–a)

x+a + γ ε, 1 – a < x ≤ 1,

and γ needs to satisfy the condition γ ≥ – 2B(1+a)
(1–a–k)a . Then when x ∈ [–a, 1], as long as γ ≥

2|B|(1+a)
(1–a–k)a , all the test conditions are satisfied. Thus as long as ε is small enough, there exists
a solution yR(x, ε) on [–a, 1] satisfying αR(x, ε) ≤ yR(x, ε) ≤ βR(x, ε), and as ε approaches 0,
we have |yR(x, ε) – Ȳ0(x, ε)| = O(ε), where

Ȳ0(x, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

V (x, ε), k < –1, –a ≤ x < 1 – a,

V (x, ε) + B(1+a)
a

x–(1–a)
x+a

– B(1+a)
a (x – (1 – a)), k < –1, 1 – a < x ≤ 1,

and

erf
[

(1 – a – k)
1
2√

2
x – (1 – a)

ε
1
2

]

=

⎧
⎨

⎩
–1 –

√
2ε

[x–(1–a)]
√

π (1–a–k) exp(– (1–a–k)[x–(1–a)]2

2ε
), x < 1 – a,

1 –
√

2ε

[x–(1–a)]
√

π (1–a–k) exp(– (1–a–k)[x–(1–a)]2

2ε
), x > 1 – a.

Remark 8 When employing the theory of differential inequalities to establish the exis-
tence of a solution, it is permissible for all functions to incorporate a boundary layer at the
endpoint. However, their stability is compromised upon traversing the turning point.

In this paper, the presence of a boundary layer in the left problem does not influence the
occurrence of the corner layer phenomenon in the right problem. Consequently, by com-
bining these two problems we establish the existence of solutions and provide estimations
for the remaining factors. As a result, Theorem 2 has been proven. �

4 Numerical examples
In this section, to further investigate the approximate effect of the asymptotic solution
obtained, we explore examples featuring a boundary layer at the left end of the interval and
a corner layer inside it. We consider four specific cases, including the two cases studied in
Sect. 2, where multiple possibilities are discussed for each case.
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Figure 1 The demarcation points when k = –1,n = 0,
and a = 1

2

Figure 2 Comparison of the asymptotic and numerical solutions when k = –1,n = 0, and a = 1 – a = 1
2

4.1 Example 1
When k = –1 and n = 0, we provide an example with a corner layer at x = 1

2 . Consider the
problem

⎧
⎨

⎩
εy′′ + (x + 1)[(x + 1

2 )(x – 1
2 )y′ – y] = 0,

y(–1) = –4, y(1) = 2.
(42)

As shown in Fig. 1, we can roughly find the demarcation point p∗ between the boundary
layer and the left outer layer and then represent the region of the boundary layer from
Fig. 2(a). Similarly, the two demarcation points ql

∗ and qr
∗ between the outer and corner

layers can also be found, and the general area of the corner layer can be marked from Fig. 1.
The fitting figures of the numerical and asymptotic solutions are shown in Figs. 2(a) and
2(b) with ε = 10–2 and ε = 10–3, respectively. From Fig. 2(a) we can see that x = 1

2 is the
corner point, and the thickness of boundary and corner layers is O(ε 1

2 ). The smaller the
ε, the better the fitting effect, and it is obvious that the thickness of boundary and corner
layers also becomes thinner with the decrease of ε.

On the basis of Example 1, we choose a = 1
4 , A = –3, B = 2, and ε = 10–3 to make Fig. 3,

which further verifies that the asymptotic solution has a good approximation.
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Figure 3 Comparison of the asymptotic and
numerical solutions when k = –1,n = 0, a = 1

4 , and
ε = 10–3

Figure 4 Comparison of the asymptotic and numerical solutions when k = –1,n = 1, and a = 1 – a = 1
2

4.2 Example 2
Unlike Example 1, we take n = 1 to study the following problem with a = 1

2 :

⎧
⎨

⎩
ε3y′′ + (x + 1)3[(x + 1

2 )(x – 1
2 )y′ – y] = 0,

y(–1) = –2, y(1) = 2.
(43)

As shown in Fig. 4(a), the thickness of boundary and corner layers are changed in the
example, which now are O(ε 3

4 ) and O(ε 3
2 ), respectively. We take ε = 10–1 and 10–2, re-

spectively, and observe the changes in Fig. 4. We find that changing the value of n does
not affect an excellent approximation, but it does influence the thickness of each layer.

4.3 Example 3
Now we take k = –1.5 and n = 0 to investigate the problem

⎧
⎨

⎩
εy′′ + (x + 1.5)[(x + 1

2 )(x – 1
2 )y′ – y] = 0,

y(–1) = –4, y(1) = 2.
(44)

We choose a = 1–a = 1
2 and ε = 10–2, 10–3, respectively. As shown in Fig. 6, the thickness

of the boundary layer is O(ε), and the thickness of the corner layer is O(ε 1
2 ). We mark the
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Figure 5 The demarcation points when
k = –1.5, n = 0, and a = 1

2

Figure 6 Comparison of the asymptotic and numerical solutions when k = –1.5,n = 0, and a = 1 – a = 1
2

Figure 7 Comparison of the asymptotic and
numerical solutions when k = –1.5,n = 0, a = 1

8 , and
ε = 10–2

layer phenomena in Fig. 5, and the numerical and asymptotic solutions fit well. As we
calculated previously, the difference between k < –1 and k = –1 is in the thickness of the
left boundary layer.

If we take a = 1
8 and a = 7

8 , then the corner points are x = 7
8 and 1

8 , respectively. As shown
in Figs. 7 and 8, when ε = 10–2, it is obvious that the fitting effect of a = 1

8 is better than
that of a = 7

8 , but by adjusting ε = 10–3 the fitting effect of a = 7
8 will also be better. This

also confirms our previous conjecture that the closer the a to 0, the better its asymptotic
effect.
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Figure 8 Comparison of the asymptotic and numerical solutions when k = –1.5,n = 0, and a = 7
8

Figure 9 Two critical cases

To verify the reliability of the conjecture, if a approaches 0, then the composite solution
can be approximated as a solution without singularity, and the conjecture can also be con-
firmed by comparison of Figs. 7 and 8. We now consider two critical cases where a = 0 and
a = 1 in problem (1):

ε2n+1y′′ + (x – k)2n+1[x(x – 1)y′ – y
]

= 0,

ε2n+1y′′ + (x – k)2n+1[x(x + 1)y′ – y
]

= 0.

The solutions are shown in Fig. 9. Comparing Fig. 9 with Figs. 7 and 8, we clearly see
that the trend of the figures is consistent, which further confirms the correctness of our
previous conjecture.

4.4 Example 4
We take n = 1 to study the problem

⎧
⎨

⎩
ε3y′′ + (x + 1.5)3[(x + 1

2 )(x – 1
2 )y′ – y] = 0,

y(–1) = –2, y(1) = 2.
(45)
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Figure 10 Comparison of the asymptotic and
numerical solutions when k = –1.5,n = 1, a = 1

2 , and
ε = 10–1

As we discussed in Example 2, the thickness of boundary and corner layers changes; the
thickness of the boundary layer is O(ε3), and the thickness of the corner layer is O(ε 3

2 ).
It is worth mentioning that since the value of n determines the power of ε and (x – k) in
problem (45), when n = 1, the order of ε is 3, as shown in Fig. 10, and then the fitting effect
of ε = 10–1 is already good.

Remark 9 When n = 0 and k < –1, we can try to use the left solution to figure out where the
boundary layer is at the point. Since the boundary layer extension variable is ξ = x+1

ε
and

the position of the boundary layer is x = –1+εl, we obtain l = – –1–k
mh by solving the algebraic

equation when substituting it into the left solution, where h = (–1 – k)(–1 + a)(–2 + a), and
m = (–1 – k)(–1 + a) + (–1 – k)(–2 + a) + (–1 + a)(–2 + a). Then for a = 1

2 and k = –1.5, we
obtain l = 5.3, which can also further determine the location of the boundary layer.

5 Conclusions and future research plan
In this paper, we discuss the singularly perturbed boundary and interior layers problems
with multiple turning points, specifically focusing on the cases involving two or three
turning points. Subsequently, we derive composite expansions that effectively capture the
numerical solutions within their respective intervals. Furthermore, based on our analy-
sis process and solution method, we can extend our discussion to scenarios featuring a
greater number of turning points.

In the process of solving, we observe a strong correlation between singular perturbation
problems with turning points and special functions. This paper explores various special
functions such as the error function, the (incomplete) gamma functions, and the confluent
hypergeometric function. These special functions possess specific definitions and prop-
erties, which are often relevant to the equations we need to solve. Moreover, the inner and
outer solutions can also be matched with their related properties. Given the diverse range
of special functions available, it is crucial to consider any potential restrictive conditions
when utilizing them.

Compared to the previous studies on this type of problem, in this paper, we present
a relatively comprehensive theoretical framework for singular perturbation analysis. It is
widely acknowledged that Eq. (1) exhibits a distinct spike phenomenon at x = –a. How-
ever, through rigorous verification, this paper demonstrates that although x = –a acts as
a turning point altering the sign of the original problem, it does not give rise to an inner
layer phenomenon. In fact, such turning point problems often exhibit such characteristics.
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Figure 11 First-order approximation of boundary
layer

Throughout the process of solving corner layer issues, this paper effectively showcases the
adaptability and versatility of matching methods.

There are many matching methods in singular perturbation problems. However, when
the general matching method proves inadequate, alternative approaches become neces-
sary. The intermediate variable matching method serves as an effective tool for addressing
complex singular perturbation problems by establishing a connection between the inner
and outer expansions through careful selection of appropriate scale variables. So it can
deal with some complicated singular perturbation problems more effectively. The combi-
nation of intermediate variable matching method and special functions can well work out
this kind of interior problem.

After proving the existence of a solution, estimating the remainder and verifying the
asymptotic effect by numerical examples, we find that the zero-order approximation ob-
tained in this paper is good, and we try to continue to obtain higher-order approximations.
When k < –1, there is no special function in the boundary layer solution, and we can solve
the boundary layer first-order solutions at this time. For example, when n = 0, we take
a = 1

2 , and as shown in Fig. 11, the asymptotic effect of the first asymptotic solution (the
solid red line) on the interval [–1, –a] is slightly better than that of the zeroth asymptotic
solution(the dotted green line). Therefore we guess that the higher-order asymptotic so-
lution will improve the approximation of this problem. However, in the process of solving,
the singularity will be stronger, and the appearance of various special functions will in-
crease the difficulty of solving the solutions. Solving higher-order asymptotic solutions
and eliminating singularity is our direction in the future.

Finally, if we can generalize the problem to a singularly perturbed problem with an in-
creased number of turning points or higher nonlinearity, it is anticipated that the complex-
ity of the problem will be significantly amplified. However, this plan remains a potential
avenue for future exploration.

We can also consider problem (46)–(47):

ε2n+1y′′ + (x – k)2n+1[(x + a)
(
x – (1 – a)

)
y′ + (y – 1)

]
= 0, (46)

y(–1) = A, y(1) = B, (47)

where k ≥ 1. Through analysis we know that this problem will produce a boundary layer
phenomenon at the right endpoint and a corner layer phenomenon at x = –a, and the
asymptotic effect is better as a approaches 1. As shown in Fig. 12, we let a = 0.25, 0.5, 0.75,
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Figure 12 The numerical solution of problem (46)–(47) when k ≥ 1

respectively, and observe their properties; just as we have analyzed, this problem has a
right boundary layer and an inner corner layer at x = –a.
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