Skip to content


Open Access

The Block-Grid Method for Solving Laplace's Equation on Polygons with Nonanalytic Boundary Conditions

Boundary Value Problems20102010:468594

Received: 8 April 2010

Accepted: 1 June 2010

Published: 24 June 2010


The block-grid method (see Dosiyev, 2004) for the solution of the Dirichlet problem on polygons, when a boundary function on each side of the boundary is given from , , is analized. In the integral represetations around each singular vertex, which are combined with the uniform grids on "nonsingular" part the boundary conditions are taken into account with the help of integrals of Poisson type for a half-plane. It is proved that the final uniform error is of order , where is the error of the approximation of the mentioned integrals, is the mesh step. For the -order derivatives ( ) of the difference between the approximate and the exact solution in each "singular" part order is obtained, here is the distance from the current point to the vertex in question, is the value of the interior angle of the th vertex. Finally, the method is illustrated by solving the problem in L-shaped polygon, and a high accurate approximation for the stress intensity factor is given.


Boundary ConditionDifferential EquationPartial Differential EquationOrdinary Differential EquationFunctional Equation

Publisher note

To access the full article, please see PDF.

Authors’ Affiliations

Department of Mathematics, Eastern Mediterranean University, Gazimagusa, Cyprus, Mersin, Turkey


© A. A. Dosiyev et al. 2010

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.