- Research Article
- Open access
- Published:
Maximal regular boundary value problems in Banach-valued weighted space
Boundary Value Problems volume 2005, Article number: 720289 (2005)
Abstract
This study focuses on nonlocal boundary value problems for elliptic ordinary and partial differential-operator equations of arbitrary order, defined in Banach-valued function spaces. The region considered here has a varying bound and depends on a certain parameter. Several conditions are obtained that guarantee the maximal regularity and Fredholmness, estimates for the resolvent, and the completeness of the root elements of differential operators generated by the corresponding boundary value problems in Banach-valued weighted spaces. These results are applied to nonlocal boundary value problems for regular elliptic partial differential equations and systems of anisotropic partial differential equations on cylindrical domain to obtain the algebraic conditions that guarantee the same properties.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Agarwal, R.P., Bohner, M. & Shakhmurov, V.B. Maximal regular boundary value problems in Banach-valued weighted space. Bound Value Probl 2005, 720289 (2005). https://doi.org/10.1155/BVP.2005.9
Received:
Published:
DOI: https://doi.org/10.1155/BVP.2005.9