Skip to main content

Monotone iterative technique for semilinear elliptic systems


We develop monotone iterative technique for a system of semilinear elliptic boundary value problems when the forcing function is the sum of Caratheodory functions which are nondecreasing and nonincreasing, respectively. The splitting of the forcing function leads to four different types of coupled weak upper and lower solutions. In this paper, relative to two of these coupled upper and lower solutions, we develop monotone iterative technique. We prove that the monotone sequences converge to coupled weak minimal and maximal solutions of the nonlinear elliptic systems. One can develop results for the other two types on the same lines. We further prove that the linear iterates of the monotone iterative technique converge monotonically to the unique solution of the nonlinear BVP under suitable conditions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to AS Vatsala.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Vatsala, A., Yang, J. Monotone iterative technique for semilinear elliptic systems. Bound Value Probl 2005, 746460 (2005).

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: