Skip to main content

Table 3 Numerical solution and pattern of Experiments 23 with different initial condition of Figs. 511

From: Numerical simulation for a class of predator–prey system with homogeneous Neumann boundary condition based on a sinc function interpolation method

Figure

η(x,y,0)

u(x,y,0)

v(x,y,0)

Fig. 5

\(\sec h(\sin (y{x^{2}}))\)

\(\sec h(50x^{2}+200y-9)+\operatorname{ones}(N)\)

\(\frac{4}{5}\sin (\cos ({y^{2}}-{x^{2}}))\)

Fig. 6

\(\sin (\sec h(\frac{x^{2}}{2}- {y^{2}})) + \frac{1}{2}\)

\(\sin (\cos (\frac{x^{2}}{2} + {y^{2}})) + \frac{1}{2}\)

\(-\sin ( {x^{2}}+\frac{y^{2}}{10})\)

Fig. 7

\(\sec h(\frac{x}{2} + {y^{3}})\)

\(\cos ({x^{2}} + {y^{2}})\)

\(\sin (50x^{2}+200y-9)\)

Fig. 8

\(-\frac{1}{10}\sin ( \frac{x^{2}+y^{2}}{10})\)

\(\cos (e^{-\sin ({x^{2}}+{y^{2}})})\)

\(\sec h(\sec h({x^{2}}+y))\)

Fig. 9

\(\frac{1}{10}\sin (\frac{y^{2}-x^{2}}{10})\)

\(\pi \sin (50x^{2}-{y^{2}})+\frac{3}{5}\operatorname{rand}(N)\)

\(\cos (x+\frac{y^{2}}{10})\)

Fig. 10

\(-\sin ( 10x^{2}+\frac{y^{2}}{10})\)

\(-\sin ( \pi ({(x-\frac{2}{5})^{3}}+{(y +\frac{2}{5})^{2}}))\)

\(\sin (-{x^{2}}+\frac{y^{2}}{10})\)

Fig. 11

\(\sin (50x^{2}+200y-9)\)

\(\cos (\pi ({(x-\frac{2}{5})^{2}}+{(y+\frac{2}{5})^{2}}))+\sec h(20({(x+\frac{2}{5})^{2}}+{(y-\frac{2}{5})^{2}}))\)

\(\sin (\pi (-{x^{2}}+{y^{2}}))\)