Open Access

Global solutions to a class of nonlinear damped wave operator equations

Boundary Value Problems20122012:42

DOI: 10.1186/1687-2770-2012-42

Received: 6 October 2011

Accepted: 13 April 2012

Published: 13 April 2012

Abstract

This study investigates the existence of global solutions to a class of nonlinear damped wave operator equations. Dividing the differential operator into two parts, variational and non-variational structure, we obtain the existence, uniformly bounded and regularity of solutions.

Mathematics Subject Classification 2000: 35L05; 35A01; 35L35.

Keywords

nonlinear damped wave operator equations global solutions uniformly bounded regularity

1 Introduction

In recent years, there have been extensive studies on well-posedness of the following nonlinear variational wave equation with general data:
t 2 u - c ( u ) x c ( u ) x u = 0 in ( 0 , ) × R , u | t = 0 = u 0 on R , t u | t = 0 = u 1 on R , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ1_HTML.gif
(1.1)
where c(·) is given smooth, bounded, and positive function with c'(·) ≥ 0 and c'(u0) > 0,u0 H1(R),u1(x) L2(R). Equation (1.1) appears naturally in the study for liquid crystals [14]. In addition, Chang et al. [5], Su [6] and Kian [7] discussed globally Lipschitz continuous solutions to a class one dimension quasilinear wave equations
u t t - p ρ ( x ) , u x x = ρ ( x ) h ρ ( x ) , u , u x , u ( x , 0 ) = u 0 ( x ) , u t ( x , 0 ) = ω 0 ( x ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ2_HTML.gif
(1.2)
where (x,t) R × R+, u0(x),ω0(x) R. Furthermore, Nishihara [8] and Hayashi [9] obtained the global solution to one dimension semilinear damped wave equation
u t t + u t - u x x = f ( u ) , ( t , x ) R + × R + ( u , u t ) ( 0 , x ) = ( u 0 , u 1 ) ( x ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ3_HTML.gif
(1.3)

Ikehata [10] and Vitillaro [11] proved global existence of solutions for semilinear damped wave equations in R N with noncompactly supported initial data or in the energy space, in where the nonlinear term f(u) = |u| p or f(u) = 0 is too special; some authors [1214] discussed the regularity of invariant sets in semilinear wave equation, but they didn't refer to any the initial value condition of it. Unfortunately, it is difficulty to classify a class wave operator equations, since the differential operator structure is too complex to identify whether have variational property. Our aim is to classify a class of nonlinear damped wave operator equations in order to research them more extensively and go beyond the results of [12].

In this article, we are interested in the existence of global solutions of the following nonlinear damped wave operator equations:
d 2 u d t 2 + k d u d t = G ( u ) , k > 0 u ( x , 0 ) = φ ( x ) , u t ( x , 0 ) = ψ ( x ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ4_HTML.gif
(1.4)

where G : X 2 × R + X 1 * https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq1_HTML.gif is a mapping, X2 X1, X1, X2 are Banach spaces and X 1 * https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq2_HTML.gif is the dual spaces of X1, R+ = [0, ∞), u = u(x,t). If k > 0, (1.4) is called damped wave equation. We obtain the existence, uniformly bounded and regularity of solutions by dividing the differential operator G(u) into two parts, variational and non-variational structure.

2 Preliminaries

First we introduce a sequence of function spaces:
X H 2 X 2 X 1 H , X 2 H 1 H , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ5_HTML.gif
(2.1)
where H, H1, H2 are Hilbert spaces, X is a linear space, X1, X2 are Banach spaces and all inclusions are dense embeddings. Suppose that
L : X X 1 is one to one dense linear operator , L u , v H = u , v H , u , v X . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ6_HTML.gif
(2.2)
In addition, the operator L has an eigenvalue sequence
L e k = λ k e k , ( k = 1 , 2 , . . . ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ7_HTML.gif
(2.3)
such that {e k } X is the common orthogonal basis of H and H2. We investigate the existence of global solutions of the Equation (1.4), so we need define its solution. Firstly, in Banach space X, introduce
L p ( ( 0 , T ) , X ) = u : ( 0 , T ) X | 0 T u p d t < , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equa_HTML.gif
where p = (p1, p2,..., p m ),p i ≥ 1(1 ≤ im),
u p = k = 1 m u k p k , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equb_HTML.gif
where | · | k is semi-norm in X, and X = i = 1 m i https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq3_HTML.gif. Similarily, we can define
W 1 , p ( ( 0 , T ) , X ) = u : ( 0 , T ) X | u , u L p ( ( 0 , T ) , X ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equc_HTML.gif

Let L loc p ( ( 0 , ) , X ) = u ( t ) X | u L p ( ( 0 , T ) , X ) , T > 0 . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq4_HTML.gif.

Definition 2.1. Set (φ, ψ) X2 × H1, u W loc 1 , 0 , , H 1 L loc ( ( 0 , ) , X 2 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq5_HTML.gif is called a globally weak solution of (1.4), if for v X1, it has
u t , v H + k u , v H = 0 t G u , v d t + k φ , v H + ψ , v H . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ8_HTML.gif
(2.4)
Definition 2.2. Let Y1,Y2 be Banach spaces, the solution u(t, φ, ψ) of (1.4) is called uniformly bounded in Y1 × Y2, if for any bounded domain Ω1 × Ω2Y1 × Y2, there exists a constant C which only depends the domain Ω1 × Ω2, such that
u Y 1 + u t Y 2 C , ( φ , ψ ) Ω 1 × Ω 2 and t 0 . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equd_HTML.gif
Definition 2.3. A mapping G : X 2 X 1 * https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq6_HTML.gif is called weakly continuous, if for any sequence {u n } X2, u n u0 in X2,
lim n G ( u n ) , v = G ( u 0 ) , v , v X 1 . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Eque_HTML.gif

Lemma 2.1. [15]Let H2, H be Hilbert spaces, and H2 H be a continuous embedding. Then there exists a orthonormal basis {e k } of H, and also is one orthogonal basis of H2.

Proof. Let I : H2H be imbedded. According to assume I is a linear compact operator, we define the mapping A : H2H as follows
A u , v H 2 = I u , v H = u , v H , v H 2 . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equf_HTML.gif
obviously, A : H2H2 is linear symmetrical compact operator and positive definite. Therefore, A has a complete eigenvalue sequence {λ k } and eigenvector sequence k H 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq7_HTML.gif such that
A k = λ k k , k = 1 , 2 , . . . , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equg_HTML.gif
and k https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq8_HTML.gif is orthogonal basis of H2. Hence
i , j H = A i , j H 2 = λ i i , j H 2 = 0 , if i j . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equh_HTML.gif

it implies i https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq9_HTML.gif is also orthogonal sequence of H. Since H2 H is dense, i https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq9_HTML.gif is also orthogonal sequence of H, so { e i } = i / i H https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq10_HTML.gif is norm orthogonal basis of H. The proof is completed.

Now, we introduce an important inequality

Lemma 2.2. [16] (Gronwall inequality) Let x(t), y(t), z(t) be real function on [a, b], where x(t) ≥ 0,atb, z(t) C[a, b], y(t) is differentiable on [a, b]. If the inequality as follows is hold
z ( t ) y ( t ) + a t x ( τ ) z ( τ ) d τ , a t b , https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ9_HTML.gif
(2.5)
then
z ( t ) y ( a ) e a t x ( s ) d s + a t e a t x ( τ ) d y d s d s . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ10_HTML.gif
(2.6)

3 Main results

Suppose that G = A + B : X 2 × R + X 1 * https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq11_HTML.gif. Throughout of this article, we assume that
  1. (i)
    There exists a function F C 1 : X 2R 1 such that
    A u , L v = - D F ( u ) , v , u , v X https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ11_HTML.gif
    (3.1)
     
  2. (ii)
    Function F is coercive, if
    F ( u ) u X 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ12_HTML.gif
    (3.2)
     
  3. (iii)
    B as follows
    B u , L v C 1 F ( u ) + C 2 v H 1 2 , u , v X https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ13_HTML.gif
    (3.3)
     

for some g L loc 1 ( 0 , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq12_HTML.gif.

Theorem 3.1. Set G : X 2 × R + X 1 * https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq1_HTML.gifis weakly continuous, (φ, ψ) X2 × H1, then we obtain the results as follows:

(1) If G = A satisfies the assumption (i) and (ii), then there exists a globally weak solution of (1.4)
u W loc 1 , ( 0 , ) , H 1 L loc ( ( 0 , ) , X 2 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equi_HTML.gif

and u is uniformly bounded in X2 × H1;

(2) If G = A + B satisfies the assumption (i), (ii) and (iii), then there exists a globally weak solution of (1.4)
u W loc 1 , ( ( 0 , ) , H 1 ) L loc ( ( 0 , ) , X 2 ) ; https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equj_HTML.gif
(3) Furthermore, if G = A + B satisfies
G u , v 1 2 v H 2 + C F ( u ) + g ( t ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ14_HTML.gif
(3.4)

for some g L loc 1 ( 0 , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq12_HTML.gif, then u W loc 2 , 2 ( 0 , ) , H https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq13_HTML.gif.

Proof. Let {e k } X be the public orthogonal basis of H and H2, satisfies (2.3).

Note
X n = i = 1 n α i e i | α i R 1 , X ̃ n = j = 1 n β j ( t ) e j | β j C 2 0 , . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ15_HTML.gif
(3.5)
From the assumption, we know L X n = X n , L X n ̃ = X n ̃ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq14_HTML.gif, apply the Galerkin method to make truncate in X n ̃ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq15_HTML.gif:
d 2 u i d t 2 + k d u i d t = G ( u n ) , e i , 1 i n u i ( x , 0 ) = φ , e i H , u i ( x , 0 ) = ψ , e i H https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ16_HTML.gif
(3.6)
there exists u n = i = 1 n u i ( t ) e i C 2 ( 0 , ) , X n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq16_HTML.gif for any v X n ̃ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq17_HTML.gif satisfies
0 t d 2 u n d t 2 + k d u n d t , v H d t = 0 t G u n , v d t https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ17_HTML.gif
(3.7)
for any v X n , it yields that
d u n d t , v H + k u n , v H = 0 t G u n , v d t + k φ , v H + ψ , v H https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ18_HTML.gif
(3.8)
  1. (1)
    If G = A , u n X n ̃ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq18_HTML.gif substitute v = d d t L u n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq19_HTML.gif into (3.7), we get
    0 t d 2 u n d t 2 + k d u n d t , d d t L u n H 1 d t = 0 t G u n , d d t L u n d t https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equk_HTML.gif
     
combine condition (2.2) with (3.1), we get
0 t Ω d 2 u n d t 2 d u n d t d x d t + 0 t Ω k d u n d t d u n d t d x d t + 0 t D F ( u n ) d u n d t d x d t = 0 0 t 1 2 d d t d u n d t H 1 2 d t + k 0 t d u n d t H 1 2 d t + 0 t d d t F ( u n ) d t = 0 1 2 d u n d t H 1 2 - 1 2 ψ n H 1 2 + k 0 t d u n d t H 1 2 d t + F ( u n ) - F ( φ n ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equl_HTML.gif
consequently, we get
F ( u n ) + 1 2 u n H 1 2 + k 0 t u n H 1 2 d t = F ( u n ) + 1 2 ψ n H 1 2 . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ19_HTML.gif
(3.9)
Assume φ H2, combine(2.2)with(2.3), we know {e n } is also the orthogonal basis of H1, then φ n φ in H2, ψ n ψ in H1, owing to H2 X2 is embedded, so
φ n φ i n X 2 ψ n ψ i n X 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ20_HTML.gif
(3.10)
due to the condition (3.6), from (3.9)and (3.10) we easily know
{ u n } W loc 1 , ( ( 0 , ) , H 1 ) L loc ( ( 0 , ) , X 2 ) i s b o u n d e d . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equm_HTML.gif
consequently, assume that
u n u 0 i n W loc 1 , ( ( 0 , ) , H 1 ) L loc ( ( 0 , ) , X 2 ) a . e . t > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equn_HTML.gif
i.e. u n u0in X2a.e. t > 0, and G is weakly continuous, so
lim n G u n , v = G u 0 , v . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equo_HTML.gif
By (3.8), we have
lim n d u n d t H + k u n , v H = lim n 0 t G u n , v d t + k φ , v H + ψ , v H d u 0 d t , v H + k u 0 , v H = 0 t G u 0 , v d t + k φ , v H + ψ , v H https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equp_HTML.gif
it indicates for any v n = 1 X n X 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq20_HTML.gif, it holds. Hence, for any v X2, we have
d u 0 d t , v H + k u 0 , v H = 0 t G u 0 , v d t + k φ , v H + ψ , v H . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ21_HTML.gif
(3.11)

Consequently, u0 is a globally weak solution of (1.4).

Furthermore, by (3.9) and (3.10), for any R > 0, there exists a constant C such that if
φ X 2 + ψ H 1 R https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ22_HTML.gif
(3.12)
then the weak solution u(t, φ, ψ) of (1.4) satisfies
u ( t , φ , ψ ) X 2 + u t ( t , φ , ψ ) H 1 C . t 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ23_HTML.gif
(3.13)
Assume (φ,ψ) X2 × H1 satisfies (3.12), by H2 X2 is dense. May fix φ n H2 such that
φ n X 2 + ψ H 1 R , lim n φ n = φ in X 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equq_HTML.gif

by (3.13), the solution {u(t, φ n , ψ)} of (1.4) is bounded in W loc 1 , ( 0 , ) , H 1 L loc ( ( 0 , ) , X 2 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq21_HTML.gif a.e. t > 0.

Therefore, assume u(t, φ n , ψ) u in W loc 1 , ( 0 , ) , H 1 L loc ( ( 0 , ) , X 2 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq21_HTML.gif then u(t) is a weak solution of (1.4), it satisfies uniformly bounded of (3.13). So the conclusion (1) is proved.
  1. (2)
    If G = A + B , u n X n ̃ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq22_HTML.gif, substitute v = d d t L u n https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq19_HTML.gif into (3.7), we get
    0 t d 2 u n d t 2 , d d t L u n H 1 + k d u n d t , d d t L u n 1 H 1 d t = 0 t A u n , d u n d t + B u n , d u n d t d t https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equr_HTML.gif
     
combine the condition (2.2) and (3.1), we have
0 t Ω d 2 u n d t 2 d u n d t d x d t + k 0 t Ω d u n d t 2 d u n d t d x d t + 0 t D F ( u n ) d u n d t d t = 0 t B u n , d u n d t d t 0 t 1 2 d d t d u n d t H 1 2 d t + k 0 t d u n d t H 1 2 d t + 0 t d d t F ( u n ) d t = 0 t B u n , d u n d t d t 1 2 u n H 1 2 - 1 2 ψ n H 1 2 + k 0 t u n H 1 2 d t + F ( u n ) + F ( φ n ) = 0 t B u n , d u n d t d t https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equs_HTML.gif
consequently, we have
F ( u n ) + 1 2 u n H 1 2 + k 0 t u n H 1 2 d t = 0 t B u n , d u n d t d t + F ( φ n ) + 1 2 ψ n H 1 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ24_HTML.gif
(3.14)
by the condition (3.3),(3.14)implies
F ( u n ) + 1 2 u n H 1 2 C 0 t F ( u n ) + 1 2 u n H 1 2 d t + f ( t ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ25_HTML.gif
(3.15)

where f ( t ) = 0 t g ( τ ) d t + 1 2 ψ H 1 2 + sup n F ( φ n ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq23_HTML.gif.

by Gronwall inequality [Lemma(2.2)], from (3.15) we easily know:
F ( u n ) + 1 2 u n H 1 2 f ( 0 ) e C t + 0 t f ( τ ) e C ( t - τ ) d τ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equ26_HTML.gif
(3.16)
it implies that, for any 0 < T < ∞
{ u n } W 1 , ( 0 , T ) , X 2 L 0 , T , X 2 is bounded . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equt_HTML.gif
now, use the same way as (1), we can obtain the result (2).
  1. (3)
    If the condition (3.4) is hold, u n X n ̃ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq24_HTML.gif, substitute v = d 2 u d t 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_IEq25_HTML.gif into (3.7), we can get
    0 t d 2 u n d t 2 , d 2 u n d t 2 H + k d u n d t , d 2 u n d t 2 H d t = 0 t G u n , d 2 u n d t 2 d t https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equu_HTML.gif
     
then
0 t d 2 u n d t 2 , d 2 u n d t 2 H d t + k 2 0 t d d t u n ( t ) H 2 d t 0 t 1 2 u n ( t ) H 2 + C F ( u n ) + g ( t ) d t 0 t d 2 u n d t 2 , d 2 u n d t 2 H d t + k 2 u n H 2 k 2 ψ n H 2 + 0 t 1 2 d 2 u n d t 2 H 2 + C F ( u n ) + g ( τ ) d τ https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equv_HTML.gif
by (3.16), it implies that
0 t d 2 u n d t 2 H 2 d τ C , ( C > 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equw_HTML.gif
consequently, for any 0 < T < ∞
{ u n } W 2 , 2 ( ( 0 , T ) , H ) is bounded . https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-42/MediaObjects/13661_2011_Article_137_Equx_HTML.gif

it implies that u W2,2((0,T), H), the main theorem (3.1) has been proved.

Declarations

Acknowledgements

The author is very grateful to the anonymous referees whose careful reading of the manuscript and valuable comments enhanced presentation of the manuscript. Foundation item: the National Natural Science Foundation of China (No. 10971148).

Authors’ Affiliations

(1)
Yangtze Center of Mathematics, Sichuan University
(2)
College of Mathematics and Software Science, Sichuan Normal University

References

  1. Glassey RT, Hunter JK, Zheng Y: Singularities and oscillations in a nonlinear variational wave equations. In IMA. Volume 91. Springer, New York; 1997.
  2. Hunter JK, Zheng Y: On a nonlinear hyperbolic variational equation I and II. Arch Rationl Mech Anal 1995, 129: 305-353. 355-383MATHMathSciNetView Article
  3. Hunter JK, Staxton RA: Dynamics of director fields. SIAM J Appl Math Phys 1991, 51: 1498-1521.MATHView Article
  4. Saxton RA: Dynamic instability of the liquid crystal director. In Current Progress in Hyperbolic. Volume 100. Edited by: Lindquist WB. Contemporary Mathematics, AMS, Providence; 1989:325-330.
  5. Chang Y, Hong JM, Hsu CH: Globally Lipschitz continuous solutions to a class of quasilinear wave equations. J Diff Eqn 2007, 236: 504-531.MATHMathSciNetView Article
  6. Su YC: Global entropy solutions to a class of quasi-linear wave equations with large time-oscillating sources. J Diff Equ 2011, 250: 3668-3700.MATHView Article
  7. Kian Y: Cauchy problem for semilinear wave equation with time-dependent metrics. Nonlinear Anal 2010, 73: 2204-2212.MATHMathSciNetView Article
  8. Nishihara KJ, Zhao HJ: Existence and nonexistence of time-global solutions to damped wave equation on half-time. Nonlinear Anal 2005, 61: 931-960.MATHMathSciNetView Article
  9. Hayashi N, Kaikina EI, Naumkin PI: Damped wave equation in the subcritional case. J Diff Equ 2004, 207: 161-194.MATHMathSciNetView Article
  10. Ikehata R, Tanizawa K: Global existence of solutions for semilinear damped wave equations in R N with noncompactly supported initial data. J Diff Eqn 2005, 61: 1189-1208.MATHMathSciNet
  11. Vitillaro E: Global existence for the wave equation with nonlinear boundary damping and source terms. J Diff Equ 2002, 186: 259-298.MathSciNetView Article
  12. Prizzi M: Regularity of invarant sets in semilinear damped wave equations. J Math Anal Appl 2009, 247: 3315-3337.MATHMathSciNet
  13. Rybakowski KP: Conley index continuation for singularly perturbed hyperbolic equations. Topol Methods Nonlinear Anal 2003, 22: 203-244.MATHMathSciNet
  14. Zelik S: Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal 2004, 3: 921-934.MATHMathSciNetView Article
  15. Ma T: Theorey and Method of Partial Differential Equations. Science Press, Beijing; 2011.
  16. Birkhoff G, Rota GC: Ordinary Differential Equations. John Wiley, New York; 1978:72-90.

Copyright

© Pan et al; licensee Springer. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.