Skip to main content

A novel stability analysis of functional equation in neutrosophic normed spaces

Abstract

The analysis of stability in functional equations (FEs) within neutrosophic normed spaces is a significant challenge due to the inherent uncertainties and complexities involved. This paper proposes a novel approach to address this challenge, offering a comprehensive framework for investigating stability properties in such contexts. Neutrosophic normed spaces are a generalization of traditional normed spaces that incorporate neutrosophic logic. By providing a systematic methodology for addressing stability concerns in neutrosophic normed spaces, our approach facilitates enhanced understanding and control of complex systems characterized by indeterminacy and uncertainty. The primary focus of this research is to propose a novel class of Euler-Lagrange additive FE and investigate its Ulam-Hyers stability in neutrosophic normed spaces. Direct and fixed point techniques are utilized to achieve the required results.

1 Introduction

Lotfi A. Zadeh, a mathematician and computer scientist, introduced the idea of fuzzy sets in his groundbreaking paper entitled “Fuzzy Sets,” published in 1965 [1]. Zadeh’s motivation was to address the limitations of classical set theory, which relies on crisp, well-defined boundaries for membership. The extension of fuzzy sets known as intuitionistic fuzzy sets (IFS) was initially proposed by Atanassov in 1983 [2, 3]. IFS provide a framework for dealing with uncertainty, vagueness, and hesitation more comprehensively than traditional fuzzy sets. A neutrosophic set is a mathematical concept introduced as an extension of classical set theory [4, 5]. Neutrosophic sets provide a way to handle indeterminacy, uncertainty, and incomplete information more flexibly.

Fuzzy normed spaces (FNS) are mathematical structures that extend the concept of normed spaces to include fuzzy numbers. Katsaras introduced the idea of FNS, a vector space equipped with a fuzzy norm, where the norm values are fuzzy numbers rather than real numbers [6]. The idea of intuitionistic fuzzy normed spaces (IFNS) was proposed in 2006 [7]. IFNS represent a fusion of concepts from fuzzy mathematics, intuitionistic fuzzy sets, and normed spaces, providing a versatile framework for handling uncertainty and imprecision in mathematical modeling and analysis. Neutrosophic normed linear spaces [8, 9] extend the ideas of neutrosophic sets to linear algebraic structures, offering a more expressive way to represent and handle uncertainty in vector spaces. Neutrosophic concepts have been applied across a wide range of mathematical fields such as groups, subgroups [10], vector spaces [11], homomorphisms of rings [12, 13], linear transformations [14], number theory [15], graph theory [16], measure theory, integral theory, probability theory [17], etc. Neutrosophic normed linear spaces find applications in various scientific and real-time applications like decision-making, control systems, optimization, image processing, pattern recognition, medical diagnosis, finance and risk management, information retrieval, and artificial intelligence [1824].

Several mathematicians have derived the results of fixed point (F-P) theory using neutrosophic concepts. Ishtiaq et al. [25] proved F-P results in the framework of an orthogonal neutrosophic metric space. The common F-P results in the context of a neutrosophic metric space were established using contraction mapping [26]. Salama and Alblowi [27] studied the neutrosophic topological spaces, whereas Al-Omeri et al. [28] analyzed a neutrosophic cone metric space. Riaz et al. [29] discussed the F-P results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces. Sharma et al. [30] studied the generalized summability using difference operators on neutrosophic normed spaces. One of the most prevalent stability theories was introduced by Ulam [31] and further developed by Hyers [32]. This theory is called the Ulam-Hyers stability and has applications in various branches of mathematics, including differential equations, functional analysis, and dynamic systems. Many researchers have worked on this theory and established the stability results in different normed spaces [3340]. Recently, Agilan et al. introduced new kinds of FEs and established the Ulam-Hyers stability of the newly proposed equations in a variety of normed spaces [4144]. Some related applications are also discussed in [4548].

This article presents a novel category of Euler-Lagrange additive FE. The Ulam-Hyers stability of the newly introduced equation is analyzed in neutrosophic normed linear spaces using two techniques: direct and fixed point techniques. The stability analysis of the newly introduced equation holds significance due to the distinctive characteristics and potentially broad applications of neutrosophic normed spaces. It is noteworthy that, for the first time in the literature, the stability of an FE has been examined within neutrosophic normed spaces. The uniqueness of this endeavor underscores the importance of this research.

This study aims to achieve the following primary objectives:

  1. (a)

    Extend and enhance the current body of work on neutrosophic normed linear spaces.

  2. (b)

    Ascertain the uniqueness of the solution for the newly proposed Euler-Lagrange additive FE.

  3. (c)

    Derive the Ulam-Hyers stability of the newly proposed equation in neutrosophic normed linear spaces using the F-P method.

2 Definitions on neutrosophic normed spaces

Definition 2.1

The Seven-tuple \((\mathbb{A}, \mathfrak{A}_{a}, \mathfrak{B}_{a}, \mathfrak{C}_{a} \ast, \diamond,\oslash)\) is said to be a neutrosophic normed space (for short, NNS) if \(\mathbb{A}\) is a vector space, is a continuous κ-norm, and is a continuous κ− conorm, and \(\mathfrak{A}_{a}\), \(\mathfrak{B}_{a}\), \(\mathfrak{C}_{a}\) are fuzzy sets on \(\mathbb{A}\times(0,\infty)\) satisfying the following conditions. For every \(p,q \in\mathbb{A}\) and \(s, \kappa> 0\),

  1. (A1)

    \(\mathfrak{A}_{a}(p, \kappa)+\mathfrak{B}_{a}(p, \kappa )+\mathfrak{C}_{a}(p, \kappa) \leq3\),

  2. (A2)

    \(0\leq\mathfrak{A}_{a}(p, \kappa)\leq1\), \(0\leq\mathfrak {B}_{a}(p, \kappa)\leq1\), \(0\leq\mathfrak{C}_{a}(p, \kappa) \leq1\),

  3. (A3)

    \(\mathfrak{A}_{a}(p, \kappa)>0\),

  4. (A4)

    \(\mathfrak{A}_{a}(p, \kappa)=1\), if and only if \(p=0\).

  5. (A5)

    \(\mathfrak{A}_{a}(\alpha p, \kappa)= \mathfrak{A}_{a} (p,\frac {\kappa}{|\alpha|} )\) for each \(\alpha\ne0\),

  6. (A6)

    \(\mathfrak{A}_{a}(p,\kappa) \ast\mathfrak{A}_{a}(q,s) \leq \mathfrak{A}_{a}(p+q,\kappa+s)\),

  7. (A7)

    \(\mathfrak{A}_{a}(p,\cdot): (0, \infty) \to[0,1]\) is continuous,

  8. (A8)

    \(\lim_{\kappa\to\infty} \mathfrak{A}_{a}(p, \kappa) = 1\) and \(\lim_{\kappa\to0} \mathfrak{A}_{a}(p, \kappa) = 0\),

  9. (A9)

    \(\mathfrak{B}_{a}(p, \kappa)<1\),

  10. (A10)

    \(\mathfrak{B}_{a}(p, \kappa)=0\), if and only if \(p=0\).

  11. (A11)

    \(\mathfrak{B}_{a}(\alpha p, \kappa)= \mathfrak{B}_{a} (p,\frac {\kappa}{|\alpha|} )\) for each \(\alpha\ne0\),

  12. (A12)

    \(\mathfrak{B}_{a}(p,\kappa) \diamond\mathfrak{B}_{a}(q,s) \geq \mathfrak{B}_{a}(p+q,\kappa+s)\),

  13. (A13)

    \(\mathfrak{B}_{a}(p,\cdot): (0, \infty) \to[0,1]\) is continuous,

  14. (A14)

    \(\lim_{\kappa\to\infty} \mathfrak{B}_{a}(p, \kappa) = 0\) and \(\lim_{\kappa\to0} \mathfrak{B}_{a}(p, \kappa) = 1\)

  15. (A15)

    \(\mathfrak{C}_{a}(p, \kappa)<1\),

  16. (A16)

    \(\mathfrak{C}_{a}(p, \kappa)=0\), if and only if \(p=0\).

  17. (A17)

    \(\mathfrak{C}_{a}(\alpha p, \kappa)= \mathfrak{C}_{a} (p,\frac {\kappa}{|\alpha|} )\) for each \(\alpha\ne0\),

  18. (A18)

    \(\mathfrak{C}_{a}(p,\kappa) \oslash\mathfrak{C}_{a}(q,s) \geq \mathfrak{C}_{a}(p+q,\kappa+s)\),

  19. (A19)

    \(\mathfrak{C}_{a}(p,\cdot): (0, \infty) \to[0,1]\) is continuous,

  20. (A20)

    \(\lim_{\kappa\to\infty} \mathfrak{C}_{a}(p, \kappa) = 0\) and \(\lim_{\kappa\to0} \mathfrak{C}_{a}(p, \kappa) = 1\).

3 Stability results: direct method

The newly proposed Euler-Lagrange additive FE is as follows:

$$\begin{aligned} &\mathfrak{T}_{1}\mathscr{A}_{1} ( \mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} )+\mathcal{P}_{1} \mathscr{A}_{1} \bigl( \mathcal{Q}_{1}\mathcal{R}_{1} (\mathscr{X}_{a}- \mathscr{V}_{a} ) \bigr) \\ &\quad \quad{}+ \mathcal{Q}_{1} \mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr)+\mathcal{R}_{1} \mathscr{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{Q}_{1} (\mathscr{W}_{a}-\mathscr{X}_{a} ) \bigr) \\ &\quad= \mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathscr{A}_{1} (\mathscr{X}_{a} ) + \mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} ( \mathscr{W}_{a} ) \bigr), \end{aligned}$$
(3.1)

where \(\mathcal{P}_{1},\mathcal{Q}_{1},\mathcal{R}_{1}\in\mathbb{R}\) with \(\mathcal{P}_{1}\), \(\mathcal{Q}_{1}\), \(\mathcal{R}_{1} \ne0\) and \(\mathfrak{T}_{1}=\mathcal{P}_{1}+\mathcal{Q}_{1}+\mathcal{R}_{1}\ne0\) in neutrosophic normed space using direct and F-P methods.

Assume that \((\mathcal{M},\mathfrak{A}_{a}',\mathfrak{B}_{a}',\mathfrak {C}_{a}' )\) is a neutrosophic normed linear space and \((\mathcal {M},\mathfrak{A}_{a},\mathfrak{B}_{a},\mathfrak{C}_{a} )\) is a neutrosophic Banach space. Let \(\mathcal{L}\) be a linear space. Then,

$$\begin{aligned} \mathfrak{Z}(\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a}) &= \mathfrak{T}_{1}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} )+\mathcal{P}_{1} \mathscr{A}_{1} \bigl( \mathcal{Q}_{1}\mathcal{R}_{1} (\mathscr{X}_{a}- \mathscr{V}_{a} ) \bigr) \\ &\quad{}+ \mathcal{Q}_{1} \mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr)+\mathcal{R}_{1} \mathscr{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{Q}_{1} (\mathscr{W}_{a}-\mathscr{X}_{a} ) \bigr) \\ &\quad{}- \mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathscr{A}_{1} (\mathscr{X}_{a} ) + \mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} ( \mathscr{W}_{a} ) \bigr), \end{aligned}$$

where \(\mathfrak{T}_{1}=\mathcal{P}_{1}+\mathcal{Q}_{1}+\mathcal {R}_{1}\), \(\mathcal{P}_{1},\mathcal{Q}_{1},\mathcal{R}_{1}\in\mathbb{R}\) and \(\mathcal{P}_{1}\), \(\mathcal{Q}_{1}\), \(\mathcal{R}_{1} \ne0\) \(\forall\mathscr{X}_{a},\mathscr{V}_{a},\mathscr{W}_{a} \in\mathcal{L}\).

Theorem 3.1

Let \(N :\mathcal{L} \times\mathcal{L} \times\mathcal{L} \longrightarrow\mathcal{M}\) be a mapping with the condition \(0 < (\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} )^{\eta}< 1\), then

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{n\eta}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n\eta}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n\eta}\mathscr{W}_{a} \bigr), \upsilon\bigr) \geq\mathfrak{A}_{a}' \bigl({ \mathscr{X}_{a}^{n\eta}N (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon} \bigr), \\ &\mathfrak{B}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{n\eta}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n\eta}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n\eta}\mathscr{W}_{a} \bigr), \upsilon\bigr) \leq\mathfrak{B}_{a}' \bigl({ \mathscr{X}_{a}^{n\eta}N (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon} \bigr), \\ &\mathfrak{C}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{n\eta}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n\eta}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n\eta}\mathscr{W}_{a} \bigr), \upsilon\bigr) \leq\mathfrak{C}_{a}' \bigl({ \mathscr{X}_{a}^{n\eta}N (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon} \bigr) \end{aligned} \right \} \end{aligned}$$
(3.2)

and

$$\begin{aligned} \left . \begin{aligned} &\lim_{n \to\infty} \mathfrak{A}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{{\eta}n} \mathscr{X}_{a},\mathfrak{T}_{1}^{{\eta}n} \mathscr{V}_{a},\mathfrak{T}_{1}^{{\eta}n} \mathscr{W}_{a} \bigr),a^{{\eta}n} \upsilon\bigr) = 1, \\ &\lim_{n \to\infty} \mathfrak{B}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{{\eta}n} \mathscr{X}_{a}, \mathfrak{T}_{1}^{{\eta}n} \mathscr{V}_{a}, \mathfrak{T}_{1}^{{\eta}n} \mathscr{W}_{a} \bigr),a^{{\eta}n} \upsilon\bigr) = 0, \\ &\lim_{n \to\infty} \mathfrak{C}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{{\eta}n} \mathscr{X}_{a}, \mathfrak{T}_{1}^{{\eta}n} \mathscr{V}_{a}, \mathfrak{T}_{1}^{{\eta}n} \mathscr{W}_{a} \bigr),a^{{\eta}n} \upsilon\bigr) = 0. \end{aligned} \right \} \end{aligned}$$
(3.3)

Assume that a mapping \(\mathscr{A}_{1}:\mathcal{L} \to\mathcal{M}\) satisfies the inequality

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathfrak{Z}(\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a}),\upsilon\bigr) \geq\mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a} ),\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \leq \mathfrak{B}_{a}' \bigl(N (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \leq \mathfrak{C}_{a}' \bigl(N (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon\bigr) \end{aligned} \right \} \end{aligned}$$
(3.4)

and unique additive function \(\mathcal{A}_{1}:\mathcal{L} \longrightarrow\mathcal{M}\)

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}) - \mathcal{A}_{1}( \mathscr{X}_{a}),\upsilon\bigr) \geq\mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a} ),\mathfrak{T}_{1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert \upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a}) - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \bigl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a} ),\mathfrak{T}_{1} \vert \mathfrak{T}_{1}- \mathscr{X}_{a} \vert \upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a}) - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \bigl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a} ),\mathfrak{T}_{1} \vert \mathfrak{T}_{1}- \mathscr{X}_{a} \vert \upsilon\bigr) \end{aligned} \right \} \end{aligned}$$
(3.5)

with the conditions \(\eta\in\{1,-1\}\), where \(\mathfrak {T}_{1}=\mathcal{P}_{1}+\mathcal{Q}_{1}+\mathcal{R}_{1}\).

Proof

Let us consider \((\mathscr{X}_{a},\mathscr{V}_{a},\mathscr{W}_{a})\) by \((\mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a})\) in (3.4), we reach

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathfrak{T}_{1}\mathscr{A}_{1} (\mathfrak{T}_{1} \mathscr{X}_{a} ) - \mathfrak{T}_{1}^{2} \mathscr{A}_{1} (\mathscr{X}_{a} ),\upsilon\bigr) \geq \mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a} ),\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathfrak{T}_{1} \mathscr{A}_{1} (\mathfrak{T}_{1}\mathscr{X}_{a} ) - \mathfrak{T}_{1}^{2} \mathscr{A}_{1} ( \mathscr{X}_{a} ),\upsilon\bigr) \leq\mathfrak{B}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a} ),\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathfrak{T}_{1} \mathscr{A}_{1} (\mathfrak{T}_{1}\mathscr{X}_{a} ) - \mathfrak{T}_{1}^{2} \mathscr{A}_{1} ( \mathscr{X}_{a} ),\upsilon\bigr) \leq\mathfrak{C}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a} ),\upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(3.6)

By applying the conditions of neutrosophic normed space, we arrive

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl({ \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})}{\mathfrak {T}_{1}}-\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{\upsilon}{\mathfrak{T}_{1}^{2}}} \biggr) \geq\mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{B}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})}{\mathfrak{T}_{1}}- \mathscr{A}_{1}(\mathscr{X}_{a}), \frac{\upsilon}{\mathfrak{T}_{1}^{2}}} \biggr) \leq\mathfrak{B}_{a}' \bigl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \upsilon\bigr), \\ &\mathfrak{C}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})}{\mathfrak{T}_{1}}- \mathscr{A}_{1}(\mathscr{X}_{a}), \frac{\upsilon}{\mathfrak{T}_{1}^{2}}} \biggr) \leq\mathfrak{C}_{a}' \bigl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(3.7)

Replacing \(\mathscr{X}_{a}\) by \(\mathfrak{T}_{1}^{n}\mathscr{X}_{a}\) in (3.7), we get

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl({ \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak {T}_{1}}-\mathscr{A}_{1}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr), \frac{\upsilon}{\mathfrak{T}_{1}^{2}}} \biggr) \geq \mathfrak{A}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\upsilon\bigr), \\ &\mathfrak{B}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak{T}_{1}} - \mathscr{A}_{1}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr), \frac{\upsilon}{\mathfrak{T}_{1}^{2}}} \biggr) \leq \mathfrak{B}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\upsilon\bigr), \\ &\mathfrak{C}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak{T}_{1}} - \mathscr{A}_{1}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr), \frac{\upsilon}{\mathfrak{T}_{1}^{2}}} \biggr) \leq \mathfrak{C}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{n} p,\mathfrak{T}_{1}^{n} \mathscr{X}_{a}, \mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr), \upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(3.8)

Using (3.8) and conditions of neutrosophic normed space, we arrive

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl({ \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak {T}_{1}^{(n+1)}}-\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n} \mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}}, \frac{\upsilon}{\mathfrak {T}_{1}^{n+2}}} \biggr)\geq \mathfrak{A}_{a}' \biggl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\frac{\upsilon}{\mathscr{X}_{a}^{n}} \biggr), \\ &\mathfrak{B}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+1)}}- \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n} \mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}}, \frac{\upsilon}{\mathfrak{T}_{1}^{n+2}}} \biggr) \leq \mathfrak{B}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\frac{\upsilon}{\mathscr{X}_{a}^{n}} \biggr), \\ &\mathfrak{C}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+1)}}- \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n} \mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}}, \frac{\upsilon}{\mathfrak{T}_{1}^{n+2}}} \biggr) \leq \mathfrak{C}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\frac{\upsilon}{\mathscr{X}_{a}^{n}} \biggr). \end{aligned} \right \} \end{aligned}$$
(3.9)

Let υ by \(\mathscr{X}_{a}^{n}\upsilon\) in (3.9), then

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl({ \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak {T}_{1}^{(n+1)}}-\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n} \mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}}, \frac{\upsilon\cdot\mathscr{X}_{a}^{n}}{\mathfrak{T}_{1}^{n+2}}} \biggr)\geq \mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{B}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+1)}}- \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}}, \frac{\upsilon\cdot\mathscr{X}_{a}^{n}}{\mathfrak {T}_{1}^{n+2}}} \biggr)\leq\mathfrak{B}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{C}_{a} \biggl({\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+1} \mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+1)}}- \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}}, \frac{\upsilon\cdot\mathscr{X}_{a}^{n}}{\mathfrak {T}_{1}^{n+2}}} \biggr)\leq\mathfrak{C}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(3.10)

It is easy to see that

$$ \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}( \mathscr{X}_{a})= \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{\mathcal{J}}}. $$
(3.11)

From (3.10) and (3.11), we reach

$$\begin{aligned} \left . \begin{aligned} & \mathfrak{A}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum_{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad = \mathfrak{A}_{a} \Biggl(\sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{\mathcal{J}}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{\mathfrak{T}_{1}^{\mathcal {J}+2}} \Biggr), \\ &\mathfrak{B}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum _{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad = \mathfrak{B}_{a} \Biggl(\sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{\mathcal{J}}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{\mathfrak{T}_{1}^{\mathcal {J}+2}} \Biggr), \\ &\mathfrak{C}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum _{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad = \mathfrak{C}_{a} \Biggl(\sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{\mathcal{J}}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{\mathfrak{T}_{1}^{\mathcal {J}+2}} \Biggr). \end{aligned} \right \} \end{aligned}$$
(3.12)

From (3.12), we arrive

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \Biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum_{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad \geq\prod_{\mathcal{J}=0}^{n-1} \mathfrak{A}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal {J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac {\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{\mathcal{J}}}, \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon r}{ \mathfrak{T}_{1}^{\mathcal{J}+2}} \biggr), \\ &\mathfrak{B}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum _{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad \leq \coprod_{\mathcal{J}=0}^{n-1}\mathfrak{B}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{\mathcal{J}}},\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{ \mathfrak{T}_{1}^{\mathcal{J}+2}} \biggr), \\ &\mathfrak{C}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum _{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad \leq \coprod_{\mathcal{J}=0}^{n-1}\mathfrak{C}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}+1}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(\mathcal{J}+1)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{\mathcal{J}}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{\mathcal{J}}},\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{ \mathfrak{T}_{1}^{\mathcal{J}+2}} \biggr), \end{aligned} \right \} \end{aligned}$$
(3.13)

where

$$\begin{aligned}& \prod_{\mathcal{J}=0}^{n-1} Q_{j} = Q_{1}\ast Q_{2}\ast\cdots\ast Q_{n} \quad \text{and} \quad\coprod_{\mathcal{J}=0}^{n-1} R_{j} = R_{1}\diamond R_{2}\diamond\cdots \diamond R_{n}\quad \text{and} \\& \coprod _{\mathcal{J}=0}^{n-1} S_{j} = S_{1}\oslash S_{2}\oslash\cdots\oslash S_{n} . \end{aligned}$$

Using the above conditions, we have

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \Biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum_{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad \geq\prod_{\mathcal{J}=0}^{n-1} \mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\upsilon\bigr) = \mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}), \upsilon\bigr), \\ &\mathfrak{B}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum _{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad \leq \coprod_{\mathcal{J}=0}^{n-1}\mathfrak{B}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr) =\mathfrak{B}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}), \upsilon\bigr), \\ &\mathfrak{C}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \sum _{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon }{\mathfrak{T}_{1}^{\mathcal{J}+2}} \Biggr) \\ &\quad \leq \coprod_{\mathcal{J}=0}^{n-1}\mathfrak{C}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr) =\mathfrak{C}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}), \upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(3.14)

Considering \(\mathscr{X}_{a}\) by \(\mathfrak{T}_{1}^{m}\mathscr{X}_{a}\) in (3.14) and dividing by \(\mathfrak{T}_{1}^{m}\), we get

$$\begin{aligned} \left . \begin{aligned} & \mathfrak{A}_{a} \Biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{m}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{\mathfrak {T}_{1}^{(\mathcal{J}+m+2)}} \Biggr) \\ &\quad\geq\mathfrak{A}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{m}\mathscr{X}_{a}, \mathfrak{T}_{1}^{m}\mathscr{X}_{a}, \mathfrak{T}_{1}^{m}\mathscr{X}_{a}\bigr), \upsilon\bigr) \\ &\quad= \mathfrak{A}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon}{\mathscr{X}_{a}^{m}} \biggr), \\ &\mathfrak{B}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{m}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{\mathfrak {T}_{1}^{(\mathcal{J}+m+2)}} \Biggr) \\ &\quad\leq\mathfrak{B}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{m}\mathscr{X}_{a}, \mathfrak{T}_{1}^{m}\mathscr{X}_{a}, \mathfrak{T}_{1}^{m}\mathscr{X}_{a}\bigr), \upsilon\bigr) \\ &\quad= \mathfrak{B}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon}{\mathscr{X}_{a}^{m}} \biggr), \\ &\mathfrak{C}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+m)}} - \frac{\mathscr{C}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{m}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}} \upsilon}{\mathfrak {T}_{1}^{(\mathcal{J}+m+2)}} \Biggr) \\ &\quad\leq\mathfrak{C}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{m}\mathscr{X}_{a}, \mathfrak{T}_{1}^{m}\mathscr{X}_{a}, \mathfrak{T}_{1}^{m}\mathscr{X}_{a}\bigr), \upsilon\bigr) \\ &\quad= \mathfrak{B}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon}{\mathscr{X}_{a}^{m}} \biggr). \end{aligned} \right \} \end{aligned}$$

Replacing υ by \(\mathscr{X}_{a}^{m}\upsilon\) in the above inequality, we have

$$\begin{aligned}& \left . \begin{aligned} &\mathfrak{A}_{a} \Biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{m}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}+m} \upsilon}{\mathfrak {T}_{1}^{(\mathcal{J}+m+2)}} \Biggr)\geq\mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}), \upsilon\bigr), \\ &\mathfrak{B}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{m}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}+m} \upsilon}{\mathfrak {T}_{1}^{(\mathcal{J}+m+2)}} \Biggr) \leq\mathfrak{B}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{C}_{a} \Biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{m}}, \sum_{\mathcal{J}=0}^{n-1} \frac{\mathscr{X}_{a}^{\mathcal{J}+m} \upsilon}{\mathfrak {T}_{1}^{(\mathcal{J}+m+2)}} \Biggr) \leq\mathfrak{C}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\upsilon\bigr), \end{aligned} \right \} \end{aligned}$$
(3.15)
$$\begin{aligned}& \left . \begin{aligned} &\mathfrak{A}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{m}}, \upsilon\biggr)\geq \mathfrak{A}_{a}' \biggl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\frac{\upsilon}{\sum_{\mathcal {J}=m}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}}}{ \mathfrak {T}_{1}^{\mathcal{J}+2}}} \biggr), \\ &\mathfrak{B}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{m}}, \upsilon\biggr)\leq\mathfrak{B}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}), \frac{\upsilon}{\sum_{\mathcal{J}=m}^{n-1}\frac {\mathscr{X}_{a}^{\mathcal{J}}}{ \mathfrak{T}_{1}^{\mathcal{J}+2}}} \biggr), \\ &\mathfrak{C}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n+m}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{(n+m)}} - \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{m}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{m}}, \upsilon\biggr)\leq\mathfrak{C}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}), \frac{\upsilon}{\sum_{\mathcal{J}=m}^{n-1}\frac {\mathscr{X}_{a}^{\mathcal{J}}}{ \mathfrak{T}_{1}^{\mathcal{J}+2}}} \biggr). \end{aligned} \right \} \end{aligned}$$
(3.16)

Since \(0<\mathscr{X}_{a}<1\) and \(\sum_{\mathcal{J}=0}^{n} (\frac {\mathscr{X}_{a}}{\mathfrak{T}_{1}} )^{\mathcal{J}} < \infty\). The sequence \({ \{\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} \}}\) is Cauchy in \((Y,\mathfrak {A}_{a}, \mathfrak{B}_{a}, \mathfrak{C}_{a} )\). Since \(({Y,\mathfrak {A}_{a},\mathfrak{B}_{a},\mathfrak{C}_{a}} )\) is a complete NSN-space, this sequence converges to some point \(\mathcal {A}_{1} (\mathscr{X}_{a} ) \in Y\). Defining \(\mathcal{A}_{1}:\mathcal {L} \longrightarrow\mathcal{M}\) by

$$\begin{aligned}& \lim_{n \to\infty} \mathfrak{A}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) =1,\\& \lim_{n \to\infty} \mathfrak{B}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) =0,\\& \lim_{n \to\infty} \mathfrak{C}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) =0. \end{aligned}$$

Finally

$$ \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} \stackrel{\mathrm{NSN}}{\longrightarrow} \mathcal{A}_{1}(\mathscr{X}_{a}), \quad\text{as } n \to\infty. $$

Consider \(m=0\) in (3.16), then

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak {T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) \geq\mathfrak{A}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon}{\sum_{\mathcal{J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}}}{ \mathfrak{T}_{1}^{\mathcal{J}+2}}} \biggr), \\ &\mathfrak{B}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) \leq \mathfrak{B}_{a}' \biggl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\frac{\upsilon}{\sum_{\mathcal {J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}}}{ \mathfrak {T}_{1}^{\mathcal{J}+2}}} \biggr), \\ &\mathfrak{C}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak {T}_{1}^{n}\mathscr{X}_{a})}{\mathfrak{T}_{1}^{n}} - \mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) \leq \mathfrak{C}_{a}' \biggl(N (\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\frac{\upsilon}{\sum_{\mathcal {J}=0}^{n-1}\frac{\mathscr{X}_{a}^{\mathcal{J}}}{ \mathfrak {T}_{1}^{\mathcal{J}+2}}} \biggr). \end{aligned} \right \} \end{aligned}$$
(3.17)

As \(n\longrightarrow\infty\) in (3.17) and

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathcal{A}_{1}(\mathscr{X}_{a}) - \mathscr{A}_{1}( \mathscr{X}_{a}), t \bigr)\geq\mathfrak{A}_{a}' \bigl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}), \mathfrak{T}_{1} \upsilon( \mathfrak{T}_{1}-\mathscr{X}_{a}) \bigr), \\ &\mathfrak{B}_{a} \bigl(\mathcal{A}_{1}( \mathscr{X}_{a}) - \mathscr{A}_{1}(\mathscr{X}_{a}), t \bigr)\leq\mathfrak{B}_{a}' \bigl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \mathfrak{T}_{1} \upsilon(\mathfrak{T}_{1}- \mathscr{X}_{a}) \bigr), \\ &\mathfrak{C}_{a} \bigl(\mathcal{A}_{1}( \mathscr{X}_{a}) - \mathscr{A}_{1}(\mathscr{X}_{a}), t \bigr)\leq\mathfrak{C}_{a}' \bigl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \mathfrak{T}_{1} \upsilon(\mathfrak{T}_{1}- \mathscr{X}_{a}) \bigr). \end{aligned} \right \} \end{aligned}$$
(3.18)

Finally, \(\mathcal{A}_{1}\) satisfies (3.1), taking \((\mathscr{X}_{a},\mathscr{V}_{a},\mathscr{W}_{a})\) by \((\mathfrak {T}_{1}^{n}\mathscr{X}_{a},\mathfrak{T}_{1}^{n}\mathscr{V}_{a},\mathfrak {T}_{1}^{n}\mathscr{W}_{a})\) in (3.4).

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl( \frac{1}{\mathfrak{T}_{1}^{n}}\mathfrak{Z}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{V}_{a}, \mathfrak{T}_{1}^{n} \mathscr{W}_{a}\bigr),\upsilon\biggr) \geq\mathfrak{A}_{a}' \bigl(N \bigl(\mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n}\mathscr{W}_{a}\bigr), \mathfrak{T}_{1}^{n} \upsilon\bigr), \\ &\mathfrak{B}_{a} \biggl(\frac{1}{\mathfrak{T}_{1}^{n}}\mathfrak{Z}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n}\mathscr{W}_{a}\bigr), \upsilon\biggr)\leq\mathfrak{B}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n}\mathscr{W}_{a}\bigr), \mathfrak{T}_{1}^{n} \upsilon\bigr), \\ &\mathfrak{C}_{a} \biggl(\frac{1}{\mathfrak{T}_{1}^{n}}\mathfrak{Z}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n}\mathscr{W}_{a}\bigr), \upsilon\biggr)\leq\mathfrak{C}_{a}' \bigl(N \bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n}\mathscr{W}_{a}\bigr), \mathfrak{T}_{1}^{n} \upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(3.19)

Here,

$$\begin{aligned}& \mathfrak{A}_{a} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr) + \mathcal{Q}_{1} \mathcal{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr) \\& \quad \quad{}+\mathcal{R}_{1} \mathcal{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{Q}_{1} (\mathscr{W}_{a}- \mathscr{X}_{a} ) \bigr)+\mathfrak{T}_{1} \mathcal{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+ \mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ) \\& \quad \quad{}-\mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} (\mathscr{X}_{a} ) + \mathcal{Q}_{1} \mathcal{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathcal{A}_{1} ( \mathscr{W}_{a} ) \bigr) \bigr) \\& \quad \geq\mathfrak{A}_{a} \biggl(\mathcal{P}_{1} \mathcal{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr)-\frac{\mathcal{P}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl( \mathcal{Q}_{1}\mathcal{R}_{1} (\mathscr{X}_{a}- \mathscr{V}_{a} ) \bigr),\frac{\upsilon}{6} \biggr) \\& \quad \quad {}\ast\mathfrak{A}_{a} \biggl(\mathcal{Q}_{1} \mathcal{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{R}_{1} (\mathscr{V}_{a}-\mathscr{W}_{a} ) \bigr) -\frac{\mathcal{Q}_{1}}{\mathfrak{T}_{1}^{n}} \mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr),\frac{\upsilon}{6} \biggr) \\& \quad \quad {}\ast\mathfrak{A}_{a} \biggl(\mathfrak{T}_{1} \mathcal{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+ \mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ) +\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ),\frac{\upsilon}{6} \biggr) \\& \quad \quad {}\ast\mathfrak{A}_{a} \biggl( -\mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathcal{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathcal{A}_{1} (\mathscr{W}_{a} ) \bigr) \\& \quad \quad {} + \frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\bigl(\mathcal{P}_{1} \mathscr{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} (\mathscr{W}_{a} ) \bigr), \frac{\upsilon}{6} \biggr) \\& \quad \quad {}\ast\mathfrak{A}_{a} \biggl( \frac{\mathcal{P}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr)+\frac{\mathcal{Q}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{R}_{1} (\mathscr{V}_{a}-\mathscr{W}_{a} ) \bigr) \\& \quad \quad {} +\frac{\mathcal{R}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{Q}_{1} (\mathscr{W}_{a}- \mathscr{X}_{a} ) \bigr) +\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+ \mathcal{R}_{1} \mathscr{W}_{a} ) \\& \quad \quad {}-\frac{\mathfrak{T}_{1}}{\mathfrak {T}_{1}^{n}} \bigl(\mathcal{P}_{1} \mathscr{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} (\mathscr{W}_{a} ) \bigr), \frac{\upsilon}{6} \biggr) \end{aligned}$$
(3.20)

and

$$\begin{aligned}& \mathfrak{B}_{a} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr) + \mathcal{Q}_{1} \mathcal{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr) \\& \quad \quad{}+\mathcal{R}_{1} \mathcal{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{Q}_{1} (\mathscr{W}_{a}- \mathscr{X}_{a} ) \bigr)+\mathfrak{T}_{1} \mathcal{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+ \mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ) \\& \quad \quad{}-\mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} (\mathscr{X}_{a} ) + \mathcal{Q}_{1} \mathcal{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathcal{A}_{1} ( \mathscr{W}_{a} ) \bigr) \bigr) \\& \quad \geq\mathfrak{B}_{a} \biggl(\mathcal{P}_{1} \mathcal{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr)-\frac{\mathcal{P}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl( \mathcal{Q}_{1}\mathcal{R}_{1} (\mathscr{X}_{a}- \mathscr{V}_{a} ) \bigr),\frac{\upsilon}{6} \biggr) \\& \quad \quad{} \diamond\mathfrak{B}_{a} \biggl(\mathcal{Q}_{1} \mathcal{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{R}_{1} (\mathscr{V}_{a}-\mathscr{W}_{a} ) \bigr) -\frac{\mathcal{Q}_{1}}{\mathfrak{T}_{1}^{n}} \mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr),\frac{\upsilon}{6} \biggr) \\& \quad \quad{}\diamond\mathfrak{B}_{a} \biggl(\mathfrak{T}_{1} \mathcal{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+ \mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ) +\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ),\frac{\upsilon}{6} \biggr) \\& \quad \quad{} \diamond\mathfrak{B}_{a} \biggl( -\mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathcal{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathcal{A}_{1} (\mathscr{W}_{a} ) \bigr) \\& \quad\quad {} + \frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}} \bigl(\mathcal{P}_{1} \mathscr{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} (\mathscr{W}_{a} ) \bigr), \frac{\upsilon}{6} \biggr) \\& \quad \quad{}\diamond\mathfrak{B}_{a} \biggl( \frac{\mathcal{P}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr)+\frac{\mathcal{Q}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{R}_{1} (\mathscr{V}_{a}-\mathscr{W}_{a} ) \bigr) \\& \quad\quad {} +\frac{\mathcal{R}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{Q}_{1} (\mathscr{W}_{a}- \mathscr{X}_{a} ) \bigr) +\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+ \mathcal{R}_{1} \mathscr{W}_{a} ) \\& \quad \quad{}-\frac{\mathfrak{T}_{1}}{\mathfrak {T}_{1}^{n}} \bigl(\mathcal{P}_{1} \mathscr{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} (\mathscr{W}_{a} ) \bigr), \frac{\upsilon}{6} \biggr) \end{aligned}$$
(3.21)

and

$$\begin{aligned}& \mathfrak{C}_{a} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr) + \mathcal{Q}_{1} \mathcal{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr) \\& \quad \quad{}+\mathcal{R}_{1} \mathcal{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{Q}_{1} (\mathscr{W}_{a}- \mathscr{X}_{a} ) \bigr)+\mathfrak{T}_{1} \mathcal{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+ \mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ) \\& \quad \quad{}-\mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} (\mathscr{X}_{a} ) + \mathcal{Q}_{1} \mathcal{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathcal{A}_{1} ( \mathscr{W}_{a} ) \bigr) \bigr) \\& \quad \geq\mathfrak{C}_{a} \biggl(\mathcal{P}_{1} \mathcal{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr)-\frac{\mathcal{P}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl( \mathcal{Q}_{1}\mathcal{R}_{1} (\mathscr{X}_{a}- \mathscr{V}_{a} ) \bigr),\frac{\upsilon}{6} \biggr) \\& \quad\quad {}\oslash\mathfrak{C}_{a} \biggl(\mathcal{Q}_{1} \mathcal{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{R}_{1} (\mathscr{V}_{a}-\mathscr{W}_{a} ) \bigr) -\frac{\mathcal{Q}_{1}}{\mathfrak{T}_{1}^{n}} \mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{R}_{1} (\mathscr{V}_{a}- \mathscr{W}_{a} ) \bigr),\frac{\upsilon}{6} \biggr) \\& \quad\quad {}\oslash\mathfrak{C}_{a} \biggl(\mathfrak{T}_{1} \mathcal{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+ \mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ) +\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+\mathcal{R}_{1} \mathscr{W}_{a} ),\frac{\upsilon}{6} \biggr) \\& \quad\quad {} \oslash\mathfrak{C}_{a} \biggl( -\mathfrak{T}_{1} \bigl(\mathcal{P}_{1} \mathcal{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathcal{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathcal{A}_{1} (\mathscr{W}_{a} ) \bigr) \\& \quad \quad {} + \frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\bigl(\mathcal{P}_{1} \mathscr{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} (\mathscr{W}_{a} ) \bigr), \frac{\upsilon}{6} \biggr) \\& \quad\quad {}\oslash\mathfrak{C}_{a} \biggl( \frac{\mathcal{P}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl(\mathcal{Q}_{1} \mathcal{R}_{1} (\mathscr{X}_{a}-\mathscr{V}_{a} ) \bigr)+\frac{\mathcal{Q}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl(\mathcal{P}_{1} \mathcal{R}_{1} (\mathscr{V}_{a}-\mathscr{W}_{a} ) \bigr) \\& \quad\quad {} +\frac{\mathcal{R}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} \bigl( \mathcal{P}_{1}\mathcal{Q}_{1} (\mathscr{W}_{a}- \mathscr{X}_{a} ) \bigr)+\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{n}}\mathscr{A}_{1} (\mathcal{P}_{1} \mathscr{X}_{a}+\mathcal{Q}_{1} \mathscr{V}_{a}+ \mathcal{R}_{1} \mathscr{W}_{a} ) \\& \quad\quad {}-\frac{\mathfrak{T}_{1}}{\mathfrak {T}_{1}^{n}} \bigl(\mathcal{P}_{1} \mathscr{A}_{1} ( \mathscr{X}_{a} ) +\mathcal{Q}_{1} \mathscr{A}_{1} (\mathscr{V}_{a} )+\mathcal{R}_{1} \mathscr{A}_{1} (\mathscr{W}_{a} ) \bigr), \frac{\upsilon}{6} \biggr). \end{aligned}$$
(3.22)

Also,

$$\begin{aligned} \left . \begin{aligned} &\lim_{n \to\infty} \mathfrak{A}_{a} \biggl(\frac{1}{\mathfrak{T}_{1}^{n}}\mathfrak{Z}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{V}_{a}, \mathfrak{T}_{1}^{n}\mathscr{W}_{a}\bigr), \frac{\upsilon}{6} \biggr)=1, \\ &\lim_{n \to\infty}\mathfrak{B}_{a} \biggl( \frac{1}{\mathfrak{T}_{1}^{n}}\mathfrak{Z}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{V}_{a},\mathfrak{T}_{1}^{n} \mathscr{W}_{a}\bigr),\frac{\upsilon}{6} \biggr)=0, \\ &\lim_{n \to\infty}\mathfrak{C}_{a} \biggl( \frac{1}{\mathfrak{T}_{1}^{n}}\mathfrak{Z}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a},\mathfrak{T}_{1}^{n} \mathscr{V}_{a},\mathfrak{T}_{1}^{n} \mathscr{W}_{a}\bigr),\frac{\upsilon}{6} \biggr)=0. \end{aligned} \right \} \end{aligned}$$
(3.23)

To prove uniqueness

$$\begin{aligned} &\mathfrak{A}_{a}\bigl(\mathcal{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}'( \mathscr{X}_{a}), \upsilon\bigr) \\ &\quad \geq\mathfrak{A}_{a} \biggl(\mathcal{A}_{1}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr)- \mathscr{A}_{1}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\frac{\upsilon.\mathfrak{T}_{1}^{n}}{2} \biggr)\ast \mathfrak{A}_{a} \biggl(\mathscr{A}_{1}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr)- \mathcal{A}_{1}'\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\frac{\upsilon.\mathfrak{T}_{1}^{n}}{2} \biggr) \\ &\quad \geq\mathfrak{A}_{a}' \biggl(N \bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr), \frac{\upsilon\mathfrak{T}_{1}^{n+1}}{2} \vert \mathfrak {T}_{1}-\mathscr{X}_{a} \vert \biggr) \\ &\quad \geq\mathfrak{A}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon \mathfrak{T}_{1}^{n+1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert }{2\cdot\mathscr{X}_{a}^{n}} \biggr), \\ &\mathfrak{B}_{a}\bigl(\mathcal{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}'( \mathscr{X}_{a}), \upsilon\bigr) \\ &\quad \leq\mathfrak{B}_{a} \biggl(\mathcal{A}_{1}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr)- \mathscr{A}_{1}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\frac{\upsilon.\mathfrak{T}_{1}^{n}}{2} \biggr)\diamond \mathfrak{B}_{a} \biggl(\mathscr{A}_{1}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr)- \mathcal{A}_{1}'\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\frac{\upsilon.\mathfrak{T}_{1}^{n}}{2} \biggr) \\ &\quad \leq\mathfrak{B}_{a}' \biggl(N \bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr), \frac{t\mathfrak{T}_{1}^{n+1}}{2} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert \biggr) \\ &\quad \leq\mathfrak{B}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon \mathfrak{T}_{1}^{n+1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert }{2\cdot\mathscr{X}_{a}^{n}} \biggr), \\ &\mathfrak{C}_{a}\bigl(\mathcal{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}'( \mathscr{X}_{a}), \upsilon\bigr) \\ &\quad \leq\mathfrak{C}_{a} \biggl(\mathcal{A}_{1}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr)- \mathscr{A}_{1}\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\frac{\upsilon.\mathfrak{T}_{1}^{n}}{2} \biggr)\diamond \mathfrak{C}_{a} \biggl(\mathscr{A}_{1}\bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr)- \mathcal{A}_{1}'\bigl(\mathfrak{T}_{1}^{n} \mathscr{X}_{a}\bigr),\frac{\upsilon.\mathfrak{T}_{1}^{n}}{2} \biggr) \\ &\quad \leq\mathfrak{C}_{a}' \biggl(N \bigl( \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{X}_{a}, \mathfrak{T}_{1}^{n}\mathscr{X}_{a}\bigr), \frac{\upsilon\mathfrak{T}_{1}^{n+1}}{2} \vert \mathfrak {T}_{1}-\mathscr{X}_{a} \vert \biggr) \\ &\quad \leq\mathfrak{C}_{a}' \biggl(N ( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \frac{\upsilon \mathfrak{T}_{1}^{n+1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert }{2\cdot\mathscr{X}_{a}^{n}} \biggr). \end{aligned}$$

Since \({\lim_{n \rightarrow\infty}\frac{\upsilon \mathfrak {T}_{1}^{n+1}|\mathfrak{T}_{1}-\mathscr{X}_{a}|}{2 \mathscr{X}_{a}^{n}} = \infty,}\)

$$\begin{aligned} \left . \begin{aligned} &\lim_{n \to\infty} \mathfrak{A}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\frac{\upsilon \mathfrak{T}_{1}^{n+1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert }{2\cdot\mathscr{X}_{a}^{n}} \biggr) =1, \\ &\lim_{n \to\infty} \mathfrak{B}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\frac{\upsilon \mathfrak{T}_{1}^{n+1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert }{2\cdot\mathscr{X}_{a}^{n}} \biggr)=0, \\ &\lim_{n \to\infty} \mathfrak{C}_{a}' \biggl(N (\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\frac{\upsilon \mathfrak{T}_{1}^{n+1} \vert \mathfrak{T}_{1}-\mathscr{X}_{a} \vert }{2\cdot\mathscr{X}_{a}^{n}} \biggr)=0. \end{aligned} \right \} \end{aligned}$$

Hence,

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a}\bigl( \mathcal{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}'( \mathscr{X}_{a}), \upsilon\bigr) =1, \\ &\mathfrak{B}_{a}\bigl(\mathcal{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}'( \mathscr{X}_{a}), \upsilon\bigr) =0, \\ &\mathfrak{B}_{a}\bigl(\mathcal{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}'( \mathscr{X}_{a}), \upsilon\bigr) =0. \end{aligned} \right \} \end{aligned}$$

Thus, \(\mathcal{A}_{1}(\mathscr{X}_{a})=\mathcal{A}_{1}'(\mathscr{X}_{a})\). Hence, \(\mathcal{A}_{1}(\mathscr{X}_{a})\) is unique.

Method 2: Assume that \(\eta=-1\). Substituting p by \(\frac {\mathscr{X}_{a}}{\mathfrak{T}_{1}}\) in (3.6) gives

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \biggl( \mathfrak{T}_{1}\mathscr{A}_{1}(\mathscr{X}_{a})- \mathfrak{T}_{1}^{2}\omega\biggl(\frac{\mathscr{X}_{a}}{\mathfrak {T}_{1}} \biggr),\upsilon\biggr) \geq\mathfrak{A}_{a}' \biggl(N \biggl(\frac{\mathscr{X}_{a}}{2},\frac{\mathscr{X}_{a}}{2},\frac{\mathscr{X}_{a}}{2} \biggr),\upsilon\biggr), \\ &\mathfrak{B}_{a} \biggl(\mathfrak{T}_{1} \mathscr{A}_{1}(\mathscr{X}_{a})- \mathfrak{T}_{1}^{2} \omega\biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\upsilon \biggr) \leq \mathfrak{B}_{a}' \biggl(N \biggl( \frac{\mathscr{X}_{a}}{2},\frac{\mathscr{X}_{a}}{2},\frac{\mathscr{X}_{a}}{2} \biggr),\upsilon \biggr), \\ &\mathfrak{C}_{a} \biggl(\mathfrak{T}_{1} \mathscr{A}_{1}(\mathscr{X}_{a})- \mathfrak{T}_{1}^{2} \omega\biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\upsilon \biggr) \leq \mathfrak{C}_{a}' \biggl(N \biggl( \frac{\mathscr{X}_{a}}{2},\frac{\mathscr{X}_{a}}{2},\frac{\mathscr{X}_{a}}{2} \biggr),\upsilon \biggr). \end{aligned} \right \} \end{aligned}$$
(3.24)

 □

Corollary 3.2

Let \(\mathscr{A}_{1}\) be an approximately additive mapping from \((Z,\mathfrak{A}_{a}',\mathfrak{B}_{a}',\mathfrak{C}_{a}' )\) in a neutrosophic normed space and \((\mathcal{M},\mathfrak{A}_{a},\mathfrak {B}_{a},\mathfrak{C}_{a} )\) be a neutrosophic Banach space that satisfies the inequality

$$\begin{aligned} \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathfrak{Z}(\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a}),\upsilon\bigr) \\ &\quad\geq \left \{ \begin{aligned} &\mathfrak{A}_{a}' (\mathcal{S} , \upsilon), \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \bigr), \upsilon\bigr),\quad \mathfrak{E},\mathfrak{F},\mathfrak{G} \ne1, \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}}, \upsilon\bigr),\quad \mathfrak{E}+\mathfrak{F}+\mathfrak{G}\ne1, \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \\ &\quad {}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr) \bigr\} , \upsilon \bigr), \quad\mathfrak{E}+\mathfrak{F}+\mathfrak{G}\ne1, \end{aligned} \right . \end{aligned} \end{aligned}$$
(3.25)
$$\begin{aligned} &\mathfrak{B}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \end{aligned}$$
(3.26)
$$\begin{aligned} &\quad\leq \left \{ \begin{aligned} &\mathfrak{B}_{a}' (\mathcal{S} , \upsilon), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \bigr), \upsilon\bigr),\quad \mathfrak{E},\mathfrak{F},\mathfrak{G} \ne1, \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{G}}, \upsilon\bigr),\quad \mathfrak{E}+\mathfrak{F}+\mathfrak{G}\ne1, \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \\ &\quad {}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr) \bigr\} , \upsilon \bigr), \quad\mathfrak{E}+\mathfrak{F}+\mathfrak{G}\ne1, \end{aligned} \right . \end{aligned}$$
(3.27)
$$\begin{aligned} &\mathfrak{C}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \end{aligned}$$
(3.28)
$$\begin{aligned} &\quad\leq \left \{ \begin{aligned} &\mathfrak{C}_{a}' (\mathcal{S} , \upsilon), \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \bigr), \upsilon\bigr),\quad \mathfrak{E},\mathfrak{F},\mathfrak{G} \ne1, \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{G}}, \upsilon\bigr),\quad \mathfrak{E}+\mathfrak{F}+\mathfrak{G}\ne1, \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \\ &\quad {}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr) \bigr\} , \upsilon \bigr), \quad\mathfrak{E}+\mathfrak{F}+\mathfrak{G}\ne1 \end{aligned} \right . \end{aligned}$$
(3.29)

such that

$$\begin{aligned} &\mathfrak{A}_{a}\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}) - \mathcal{A}_{1}( \mathscr{X}_{a}),\upsilon\bigr) \\ &\quad\geq \left \{ \begin{aligned} &\mathfrak{A}_{a}' \bigl(\mathcal{S}, \mathfrak{T}_{1} t\upsilon \vert \mathfrak{T}_{1}-1 \vert \bigr), \\ &\mathfrak{A}_{a}'\bigl(\bigl[\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{F}}+\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{G}}\bigr], \\ &\quad\mathfrak{T}_{1} \upsilon\bigl[ \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{E}} \bigr\vert + \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{F}} \bigr\vert + \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{G}} \bigr\vert \bigr]\bigr), \\ &\mathfrak{A}_{a}'\bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}, \mathfrak{T}_{1} \upsilon\bigl\vert \mathfrak{T}_{1}- \mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr\vert \bigr), \\ &\mathfrak{A}_{a}'\bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \\ &\quad{}+\bigl[\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{F}}+ \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{G}}\bigr], \\ &\quad\mathfrak{T}_{1} \upsilon\bigl\vert \mathfrak{T}_{1}- \mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr\vert \bigr), \end{aligned} \right . \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a}) - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \\ &\quad\leq \left \{ \begin{aligned} & \mathfrak{B}_{a}' \bigl(\mathcal{S}, \mathfrak{T}_{1} \upsilon \vert \mathfrak{T}_{1}-1 \vert \bigr), \\ &\mathfrak{B}_{a}' \bigl( \bigl[\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{F}}+\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{G}} \bigr], \\ &\quad\mathfrak{T}_{1} \upsilon\bigl[ \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{E}} \bigr\vert + \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{F}} \bigr\vert + \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{G}} \bigr\vert \bigr] \bigr), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}, \mathfrak{T}_{1} \upsilon\bigl\vert \mathfrak{T}_{1}- \mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr\vert \bigr), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \\ &\quad{}+ \bigl[\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{F}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{G}} \bigr], \\ &\quad\mathfrak{T}_{1} \upsilon\bigl\vert \mathfrak{T}_{1}- \mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr\vert \bigr), \end{aligned} \right . \end{aligned}$$
(3.30)
$$\begin{aligned} &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a}) - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \\ &\quad\leq \left \{ \begin{aligned} & \mathfrak{C}_{a}' \bigl(\mathcal{S}, \mathfrak{T}_{1} \upsilon \vert \mathfrak{T}_{1}-1 \vert \bigr), \\ &\mathfrak{C}_{a}'\bigl(\bigl[\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{F}}+\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{G}}\bigr], \\ &\quad\mathfrak{T}_{1} \upsilon\bigl[ \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{E}} \bigr\vert + \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{F}} \bigr\vert + \bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{G}} \bigr\vert \bigr]\bigr), \\ &\mathfrak{C}_{a}'\bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}, \mathfrak{T}_{1} \upsilon\bigl\vert \mathfrak{T}_{1}-\mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak {G}} \bigr\vert \bigr), \\ &\mathfrak{C}_{a}'\bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \\ &\quad{}+\bigl[\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}} + \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{F}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{F}}+ \mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{G}} \vert \mathfrak{T}_{1} \vert ^{\mathfrak{G}}\bigr], \\ &\quad\mathfrak{T}_{1} \upsilon\bigl\vert \mathfrak{T}_{1}- \mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr\vert \bigr). \end{aligned} \right . \end{aligned}$$

Proof

Let

$$ N (\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a} ) = \left \{ \begin{aligned} &\mathcal{S}, \\ &\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \bigr), \\ &\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert y \Vert ^{\mathfrak{F}} \Vert z \Vert ^{\mathfrak{G}}, \\ &\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{F}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{G}} \\ &\quad {}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}} \bigr) \bigr\} , \end{aligned} \right . $$

and

$$ \mathscr{X}_{a} = \left \{ \begin{aligned} &\mathfrak{T}_{1}^{0}, \\ &\mathfrak{T}_{1}^{A}+\mathfrak{T}_{1}^{B}+ \mathfrak{T}_{1}^{C}, \\ &\mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}, \\ &\mathfrak{T}_{1}^{\mathfrak{E}+\mathfrak{F}+\mathfrak{G}}. \end{aligned} \right . $$

 □

4 Stability results: fixed point method [49]

Theorem 4.1

Let \(N :\mathcal{L} \times\mathcal{L} \times\mathcal{L} \longrightarrow\mathcal{M}\) such that

$$\begin{aligned} \left . \begin{aligned} &\lim_{n \to\infty} \mathfrak{A}_{a}' \bigl(K \bigl(\mathfrak{D}_{i}^{n} \mathscr{X}_{a},\mathfrak{D}_{i}^{n} \mathscr{V}_{a},\mathfrak{D}_{i}^{n} \mathscr{W}_{a} \bigr),\mathfrak{D}^{n} \upsilon\bigr) = 1, \\ &\lim_{n \to\infty} \mathfrak{B}_{a}' \bigl(K \bigl(\mathfrak{D}_{i}^{n}\mathscr{X}_{a}, \mathfrak{D}_{i}^{n}\mathscr{V}_{a}, \mathfrak{D}_{i}^{n}\mathscr{W}_{a} \bigr), \mathfrak{D}^{n} \upsilon\bigr) = 0, \\ &\lim_{n \to\infty} \mathfrak{C}_{a}' \bigl(K \bigl(\mathfrak{D}_{i}^{n}\mathscr{X}_{a}, \mathfrak{D}_{i}^{n}\mathscr{V}_{a}, \mathfrak{D}_{i}^{n}\mathscr{W}_{a} \bigr), \mathfrak{D}^{n} \upsilon\bigr) = 0, \end{aligned} \right \} \end{aligned}$$
(4.1)

where

$$\begin{aligned} \mathfrak{D}_{i} = \textstyle\begin{cases} \mathfrak{T}_{1} &\textit{if }i=0, \\ \frac{1}{\mathfrak{T}_{1}}&\textit{if }i=1, \end{cases}\displaystyle \end{aligned}$$
(4.2)

then

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathfrak{Z}(\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a}),\upsilon\bigr) \geq\mathfrak{A}_{a}' \bigl(K (\mathscr{X}_{a},\mathscr{V}_{a}, \mathscr{W}_{a} ),\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \leq \mathfrak{B}_{a}' \bigl(K (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \leq \mathfrak{C}_{a}' \bigl(K (\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a} ),\upsilon\bigr). \end{aligned} \right \} \end{aligned}$$
(4.3)

If \(L=L(i)\) and

$$ \mathscr{A}_{1}(\mathscr{X}_{a})= \frac{1}{\mathfrak{T}_{1}} K \biggl(\frac{\mathscr{X}_{a}}{\mathfrak {T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}}, \frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr), $$
(4.4)

and

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a}' \biggl(L\frac{\mathscr{A}_{1}(\mathfrak{D}_{i}\mathscr{X}_{a})}{\mathfrak{D}_{i}}, \upsilon\biggr) = \mathfrak{A}_{a}' \bigl(\mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{B}_{a}' \biggl(L\frac{\mathscr{A}_{1}(\mathfrak{D}_{i}\mathscr{X}_{a})}{\mathfrak{D}_{i}}, \upsilon\biggr) = \mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{C}_{a}' \biggl(L\frac{\mathscr{A}_{1}(\mathfrak{D}_{i}\mathscr{X}_{a})}{\mathfrak{D}_{i}}, \upsilon\biggr) = \mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr) \end{aligned} \right \} \end{aligned}$$
(4.5)

also

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \biggl(\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{L^{1-i}}{1-L}\upsilon\biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{L^{1-i}}{1-L} \upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{L^{1-i}}{1-L} \upsilon\biggr). \end{aligned} \right \} \end{aligned}$$
(4.6)

Proof

Let

$$\begin{aligned}& \mathcal{S}=\bigl\{ h_{1}\mid h_{1}:{ \mathscr{X}_{a}}\longrightarrow{Y}, \mathscr{A}_{1}(0)=0 \bigr\} , \\& d(h_{1},f_{1})=\inf\left\{L \in(0,\infty):\left \{ \begin{aligned} &\mathfrak{A}_{a}(\mathscr{A}_{1}(\mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon)\geq\mathfrak{A}_{a}'(\mathscr{A}_{1}(\mathscr{X}_{a}), L\upsilon), \upsilon> 0, \\ &\mathfrak{B}_{a}(\mathscr{A}_{1}(\mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon)\leq\mathfrak{B}_{a}'(\mathscr{A}_{1}(\mathscr{X}_{a}), L\upsilon), \upsilon> 0, \\ &\mathfrak{C}_{a}(\mathscr{A}_{1}(\mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon)\leq\mathfrak{B}_{a}'(\mathscr{A}_{1}(\mathscr{X}_{a}), L\upsilon), \upsilon> 0 \end{aligned} \right \} \right\} . \end{aligned}$$
(4.7)

Hence, by (4.7)

$$\begin{aligned} \inf\left\{ L \in(0,\infty): \begin{aligned} &\left \{ \begin{aligned} &\mathfrak{A}_{a}\bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\bigr\} , \\ &\mathfrak{A}_{a}\biggl(\frac{1}{\mathfrak{D}_{i} }\mathscr{A}_{1}( \mathfrak{D}_{i} \mathscr{X}_{a})-\frac{1}{\mathfrak{D}_{i} } \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \upsilon\biggr)\geq\mathfrak{A}_{a}'\bigl( \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \mathfrak{D}_{i} \upsilon\bigr)\bigr\} , \\ & \mathfrak{A}_{a}\biggl(\frac{1}{\mathfrak{D}_{i} }\mathscr{A}_{1}( \mathfrak{D}_{i} \mathscr{X}_{a})-\frac{1}{\mathfrak{D}_{i} } \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \upsilon\biggr)\geq\mathfrak{A}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L \upsilon\bigr)\}, \\ & \mathfrak{A}_{a}\bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L \upsilon\bigr)\bigr\} , \end{aligned} \right . \\ &\left \{ \begin{aligned} & \mathfrak{B}_{a}\bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathscr{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl(\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \bigr\} , \\ & \mathfrak{B}_{a}\biggl(\frac{1}{\mathfrak{D}_{i} }\mathscr{A}_{1}( \mathfrak{D}_{i} \mathscr{X}_{a})-\frac{1}{\mathfrak{D}_{i} } \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \upsilon\biggr)\leq\mathfrak{B}_{a}'\bigl( \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \mathfrak{D}_{i} \upsilon\bigr)\bigr\} , \\ & \mathfrak{B}_{a}\biggl(\frac{1}{\mathfrak{D}_{i} }\mathscr{A}_{1}( \mathfrak{D}_{i} \mathscr{X}_{a})-\frac{1}{\mathfrak{D}_{i} } \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \upsilon\biggr)\leq\mathfrak{B}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L\upsilon\bigr)\bigr\} , \\ &\mathfrak{B}_{a}\bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L \upsilon\bigr)\bigr\} , \end{aligned} \right . \\ &\left \{ \begin{aligned} & \mathfrak{C}_{a}\bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathscr{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl(\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \bigr\} , \\ & \mathfrak{C}_{a}\biggl(\frac{1}{\mathfrak{D}_{i} }\mathscr{A}_{1}( \mathfrak{D}_{i} \mathscr{X}_{a})-\frac{1}{\mathfrak{D}_{i} } \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \upsilon\biggr)\leq\mathfrak{C}_{a}'\bigl( \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \mathfrak{D}_{i} \upsilon\bigr)\bigr\} , \\ & \mathfrak{C}_{a}\biggl(\frac{1}{\mathfrak{D}_{i} }\mathscr{A}_{1}( \mathfrak{D}_{i} \mathscr{X}_{a})-\frac{1}{\mathfrak{D}_{i} } \mathscr{A}_{1}(\mathfrak{D}_{i} \mathscr{X}_{a}), \upsilon\biggr)\leq\mathfrak{C}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L\upsilon\bigr)\bigr\} , \\ &\mathfrak{C}_{a}\bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L \upsilon\bigr)\bigr\} \end{aligned} \right . \end{aligned} \right\} \end{aligned}$$

after that

$$ \inf\left\{ 1 \in(0,\infty): \left\{ \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})- \mathfrak{T}_{1}\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl(K( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \mathfrak{T}_{1}\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathfrak{T}_{1}\mathscr{X}_{a})-\mathfrak{T}_{1} \mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq \mathfrak{B}_{a}' \bigl(K(\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\mathfrak{T}_{1} \upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathfrak{T}_{1}\mathscr{X}_{a})-\mathfrak{T}_{1} \mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq \mathfrak{C}_{a}' \bigl(K(\mathscr{X}_{a}, \mathscr{X}_{a},\mathscr{X}_{a}),\mathfrak{T}_{1} \upsilon\bigr) \end{aligned} \right\} \right\}. $$
(4.8)

Assuming \(i=0\),

$$\begin{aligned}& \inf\left\{L^{1-0} \in(0,\infty): \left \{ \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})- \mathfrak{T}_{1}\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \bigl(K( \mathscr{X}_{a},\mathscr{X}_{a},\mathscr{X}_{a}), \mathfrak{T}_{1}\upsilon\bigr), \\ &\mathfrak{A}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})}{\mathfrak{T}_{1}}-\mathscr{A}_{1}( \mathscr{X}_{a}),\upsilon\biggr) \geq\mathfrak{A}_{a}' \bigl(K(\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\mathfrak{T}_{1}^{2} \upsilon\bigr), \\ &\mathfrak{A}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr), \\ &\mathfrak{A}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr), \\ &\mathfrak{A}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr) \end{aligned} \right \} \right\} , \end{aligned}$$
(4.9)
$$\begin{aligned}& \inf\left\{L^{1-0} \in(0,\infty): \left \{ \begin{aligned} &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}(\mathfrak{T}_{1} \mathscr{X}_{a})-\mathfrak{T}_{1}\mathscr{A}_{1}( \mathscr{X}_{a}), t \bigr) \leq\mathfrak{B}_{a}' \bigl(K(\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\mathfrak{T}_{1}\upsilon\bigr), \\ &\mathfrak{B}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})}{\mathfrak{T}_{1}}-\mathscr{A}_{1}( \mathscr{X}_{a}),\upsilon\biggr)\leq\mathfrak{B}_{a}' \bigl(K(\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\mathfrak{T}_{1}^{2} \upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr) \end{aligned} \right \} \right\} , \end{aligned}$$
(4.10)
$$\begin{aligned}& \inf\left\{L^{1-0} \in(0,\infty): \left \{ \begin{aligned} &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}(\mathfrak{T}_{1} \mathscr{X}_{a})-\mathfrak{T}_{1}\mathscr{A}_{1}( \mathscr{X}_{a}), t \bigr) \leq\mathfrak{B}_{a}' \bigl(K(\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\mathfrak{T}_{1}\upsilon\bigr), \\ &\mathfrak{C}_{a} \biggl(\frac{\mathscr{A}_{1}(\mathfrak{T}_{1}\mathscr{X}_{a})}{\mathfrak{T}_{1}}-\mathscr{A}_{1}( \mathscr{X}_{a}),\upsilon\biggr)\leq\mathfrak{C}_{a}' \bigl(K(\mathscr{X}_{a},\mathscr{X}_{a}, \mathscr{X}_{a}),\mathfrak{T}_{1}^{2} \upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(J\mathscr{A}_{1}( \mathscr{X}_{a})-\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),L\upsilon\bigr) \end{aligned} \right \} \right\} . \end{aligned}$$
(4.11)

If \(i=1\), and

$$\begin{aligned}& \inf\bigl\{ L^{1-1} \in(0,\infty): \\& \left. \begin{aligned} &\quad \left\{ \begin{aligned} &\mathfrak{A}_{a} \biggl(\mathscr{A}_{1}(\mathscr{X}_{a})- \mathfrak{T}_{1}\omega\biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\upsilon \biggr) \geq\mathfrak{A}_{a}' \biggl(K \biggl( \frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\mathfrak{T}_{1} \upsilon\biggr), \\ &\mathfrak{A}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{A}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{A}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \end{aligned} \right. \\ &\quad \left\{ \begin{aligned} &\mathfrak{B}_{a} \biggl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathfrak{T}_{1} \omega\biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr), t \biggr) \leq \mathfrak{B}_{a}' \biggl(K \biggl( \frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\mathfrak {T}_{1}\upsilon\biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \end{aligned} \right. \\ &\quad \left\{ \begin{aligned} &\mathfrak{C}_{a} \biggl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathfrak{T}_{1} \omega\biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr), t \biggr) \leq \mathfrak{C}_{a}' \biggl(K \biggl( \frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\mathfrak {T}_{1}\upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}' \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}),\upsilon\bigr) \end{aligned} \right. \end{aligned} \right\} \end{aligned}$$
(4.12)

and

$$\begin{aligned} &\inf\left\{L^{1-i} \in(0,\infty):\left\{ \begin{aligned} &\mathfrak{A}_{a}\bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L^{1-i} \upsilon\bigr), \\ &\mathfrak{B}_{a}\bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L^{1-i} \upsilon\bigr), \\ &\mathfrak{C}_{a}\bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-J\mathscr{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L^{1-i} \upsilon\bigr) \end{aligned} \right\}\right\}. \end{aligned}$$
(4.13)

Hence property [49] Condition :1 holds.

According to the Condition :2, [49] there is a alternative fixed point \(\mathcal{A}_{1}\) of J in \(\mathcal {S} \) then

$$\begin{aligned}& \lim_{n \to\infty} \mathfrak{A}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{D}_{i}^{n}\mathscr{X}_{a})}{\mathfrak {D}_{i}^{n}} - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) =1, \\& \lim_{n \to\infty} \mathfrak{B}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{D}_{i}^{n}\mathscr{X}_{a})}{\mathfrak {D}_{i}^{n}} - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) =0, \\& \lim_{n \to\infty} \mathfrak{C}_{a} \biggl( \frac{\mathscr{A}_{1}(\mathfrak{D}_{i}^{n}\mathscr{X}_{a})}{\mathfrak {D}_{i}^{n}} - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\biggr) =0. \end{aligned}$$

For \(\mathscr{A}_{1}\) is additive, taking \((\mathscr{X}_{a},\mathscr{V}_{a},\mathscr{W}_{a} )\) by \((\mathfrak{D}_{i}^{n} \mathscr{X}_{a}, \mathfrak{D}_{i}^{n} \mathscr{V}_{a},\mathfrak{D}_{i}^{n} \mathscr{W}_{a} )\).

Fixed point Condition :3 of [49], \(\mathcal{A}_{1}\) is the alternative fixed point of J in the set \(\Delta=\{\mathcal{A}_{1} \in\mathcal{S} : d(\mathscr{A}_{1},A)<\infty\}\), and \(\mathcal{A}_{1} \) is a unique mapping then

$$ \left . \begin{aligned} &\mathfrak{A}_{a}\bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr)\geq\mathfrak{A}_{a}' \bigl(\mathscr{A}_{1}(\mathscr{X}_{a}), L^{1-i}\upsilon\bigr),\quad \mathscr{X}_{a}\in{\mathcal{L}}, \\ &\mathfrak{B}_{a}\bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{B}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L^{1-i} \upsilon\bigr),\quad \mathscr{X}_{a}\in{\mathcal{L}}, \\ &\mathfrak{C}_{a}\bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)\leq\mathfrak{C}_{a}'\bigl( \mathscr{A}_{1}(\mathscr{X}_{a}), L^{1-i} \upsilon\bigr),\quad \mathscr{X}_{a}\in{\mathcal{L}}. \end{aligned} \right \} $$

By applying [49] Condition :4

$$ \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \biggl(\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{L^{1-i}}{1-L}\upsilon\biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{L^{1-i}}{1-L} \upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{L^{1-i}}{1-L} \upsilon\biggr). \end{aligned} \right \} $$

Hence proved. □

Corollary 4.2

Let \(\mathscr{A}_{1}\) be an approximately additive mapping from \((Z,\mathfrak{A}_{a}',\mathfrak{B}_{a}',\mathfrak{C}_{a}' )\) in a neutrosophic normed space and \((\mathcal{M},\mathfrak{A}_{a},\mathfrak {B}_{a},\mathfrak{C}_{a} )\) be a neutrosophic Banach space satisfying the inequality

$$\begin{aligned}& \mathfrak{A}_{a} \bigl(\mathfrak{Z}( \mathscr{X}_{a},\mathscr{V}_{a},\mathscr{W}_{a}), \upsilon\bigr) \\& \quad\geq \left \{ \begin{aligned} &\mathfrak{A}_{a}' (\mathcal{S} , \upsilon), \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}} \bigr), \upsilon\bigr),\quad \mathfrak{E}\ne1, \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}, \upsilon\bigr), \quad3 \mathfrak{E}\ne1, \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{3\mathfrak{E}} \bigr) \bigr\} , \upsilon \bigr),\quad3\mathfrak{E}\ne1, \end{aligned} \right . \\& \mathfrak{B}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \\& \quad\leq \left \{ \begin{aligned} &\mathfrak{B}_{a}' (\mathcal{S} , \upsilon), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}} \bigr), \upsilon\bigr),\quad \mathfrak{E}\ne1, \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}, \upsilon\bigr), \quad3 \mathfrak{E}\ne1, \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{3\mathfrak{E}} \bigr) \bigr\} , \upsilon \bigr),\quad3\mathfrak{E}\ne1, \end{aligned} \right . \\& \mathfrak{C}_{a} \bigl(\mathfrak{Z}(\mathscr{X}_{a}, \mathscr{V}_{a},\mathscr{W}_{a}),\upsilon\bigr) \\& \quad\leq \left \{ \begin{aligned} &\mathfrak{C}_{a}' (\mathcal{S} , \upsilon), \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}} \bigr), \upsilon\bigr),\quad \mathfrak{E}\ne1, \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}, \upsilon\bigr), \quad3 \mathfrak{E}\ne1, \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{3\mathfrak{E}} \bigr) \bigr\} , \upsilon \bigr),\quad3\mathfrak{E}\ne1 \end{aligned} \right . \end{aligned}$$

such that

$$\begin{aligned} \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a}) - \mathcal{A}_{1}( \mathscr{X}_{a}),\upsilon\bigr) \geq \left \{ \begin{aligned} &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}}, \frac{\mathfrak{T}_{1}}{1-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac {\mathfrak{T}_{1}}{ \mathfrak{T}_{1}^{\mathfrak{E}}-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},\frac {\mathfrak{T}_{1}}{ \mathfrak{T}_{1}^{3\mathfrak{E}}-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} ,\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{3\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon \biggr) \biggr), \end{aligned} \right . \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a}) - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq \left \{ \begin{aligned} &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak {T}_{1}}{1-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac {\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon\biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},\frac {\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{3\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon\biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} ,\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{3\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon \biggr) \biggr), \end{aligned} \right . \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a}) - \mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq \left \{ \begin{aligned} &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak {T}_{1}}{1-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac {\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon\biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},\frac {\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{3\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon\biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} ,\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{3\mathfrak{E}}-\mathfrak {T}_{1}}\upsilon \biggr) \biggr). \end{aligned} \right . \end{aligned} \end{aligned}$$
(4.14)

Proof

Let

$$\begin{aligned} &\mathfrak{A}_{a}' \bigl(K\bigl( \mathfrak{D}_{i}^{n} \mathscr{X}_{a}, \mathfrak{D}_{i}^{n} \mathscr{V}_{a}, \mathfrak{D}_{i}^{n} \mathscr{W}_{a}\bigr), \mathfrak{D}_{i}^{\mathscr{L}_{1}} \upsilon\bigr) \\ &\quad = \left \{ \begin{aligned} &\mathfrak{A}_{a}' \bigl(\mathcal{S} , \mathfrak{D}_{i}^{k} \upsilon \bigr), \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}} \bigr), \mathfrak{D}_{i}^{\mathscr{L}_{1}-\mathfrak{E}} \upsilon\bigr), \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}, \mathfrak{D}_{i}^{\mathscr{L}_{1}-3\mathfrak{E}} \upsilon\bigr), \\ &\mathfrak{A}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{3\mathfrak{E}} \bigr) \bigr\} , \mathfrak{D}_{i}^{\mathscr{L}_{1}-3\mathfrak{E}} \upsilon\bigr) \end{aligned} \right . \\ &\quad =\left \{ \begin{aligned} &\rightarrow1 \quad\text{as } \mathscr{L}_{1} \rightarrow\infty, \\ &\rightarrow1 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty, \\ &\rightarrow1 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty, \\ &\rightarrow1 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty \end{aligned} \right . \\ &\mathfrak{B}_{a}' \bigl(K\bigl( \mathfrak{D}_{i}^{n} \mathscr{X}_{a}, \mathfrak{D}_{i}^{n} \mathscr{V}_{a}, \mathfrak{D}_{i}^{n} \mathscr{W}_{a}\bigr), \mathfrak{D}_{i}^{\mathscr{L}_{1}} \upsilon\bigr) \\ &\quad = \left \{ \begin{aligned} &\mathfrak{B}_{a}' \bigl(\mathcal{S} , \mathfrak{D}_{i}^{\mathscr{L}_{1}} \upsilon \bigr), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}} \bigr), \mathfrak{D}_{i}^{\mathscr{L}_{1}-\mathfrak{E}} \upsilon\bigr), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}, \mathfrak{D}_{i}^{\mathscr{L}_{1}-3\mathfrak{E}} \upsilon\bigr), \\ &\mathfrak{B}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{3\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{3\mathfrak{E}} \bigr) \bigr\} , \mathfrak{D}_{i}^{\mathscr{L}_{1}-3\mathfrak{E}} \upsilon\bigr) \end{aligned} \right . \\ &\quad =\left \{ \begin{aligned} &\rightarrow0 \quad\text{as } \mathscr{L}_{1} \rightarrow\infty, \\ &\rightarrow0 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty, \\ &\rightarrow0 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty, \\ &\rightarrow0 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty \end{aligned} \right . \\ &\mathfrak{C}_{a}' \bigl(K\bigl( \mathfrak{D}_{i}^{n} \mathscr{X}_{a}, \mathfrak{D}_{i}^{n} \mathscr{V}_{a}, \mathfrak{D}_{i}^{n} \mathscr{W}_{a}\bigr), \mathfrak{D}_{i}^{\mathscr{L}_{1}} \upsilon\bigr) \\ &\quad = \left \{ \begin{aligned} &\mathfrak{C}_{a}' \bigl(\mathcal{S} , \mathfrak{D}_{i}^{\mathscr{L}_{1}} \upsilon \bigr), \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \bigl( \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}}+ \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}} \bigr), \mathfrak{D}_{i}^{\mathscr{L}_{1}-\mathfrak{E}} \upsilon\bigr), \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}, \mathfrak{D}_{i}^{\mathscr{L}_{1}-3\mathfrak{E}} \upsilon\bigr), \\ &\mathfrak{C}_{a}' \bigl(\mathcal{S} \bigl\{ \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{V}_{a} \Vert ^{\mathfrak{E}} \Vert \mathscr{W}_{a} \Vert ^{\mathfrak{E}}+ \bigl( \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}+ \Vert y \Vert ^{3\mathfrak{E}}+ \Vert z \Vert ^{3\mathfrak{E}} \bigr) \bigr\} , \mathfrak{D}_{i}^{\mathscr{L}_{1}-3\mathfrak{E}} \upsilon\bigr) \end{aligned} \right . \\ &\quad =\left \{ \begin{aligned} &\rightarrow0 \quad\text{as } \mathscr{L}_{1} \rightarrow\infty, \\ &\rightarrow0 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty, \\ &\rightarrow0 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty, \\ &\rightarrow0 \quad\text{as }\mathscr{L}_{1} \rightarrow \infty. \end{aligned} \right . \end{aligned}$$

Here (4.1) exists, then

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a}' \biggl( \frac{1}{\mathfrak{T}_{1}}K \biggl(\frac{\mathscr{X}_{a}}{\mathfrak {T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}}, \frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\upsilon\biggr) = \left \{ \begin{aligned} &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}}, \upsilon\biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\upsilon \biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},\upsilon \biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} \biggr) ,\upsilon\biggr), \end{aligned} \right . \\ &\mathfrak{B}_{a}' \biggl(\frac{1}{\mathfrak{T}_{1}}K \biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}},v,\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr),\upsilon\biggr) = \left \{ \begin{aligned} &\mathfrak{B}_{a}' \biggl( \frac{\mathcal{S}}{\mathfrak{T}_{1}},\upsilon\biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\upsilon \biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},\upsilon \biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} \biggr) ,\upsilon\biggr), \end{aligned} \right . \\ &\mathfrak{C}_{a}' \biggl(\frac{1}{\mathfrak{T}_{1}}K \biggl(\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}},\frac{\mathscr{X}_{a}}{\mathfrak{T}_{1}} \biggr), \upsilon\biggr) = \left \{ \begin{aligned} &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}},\upsilon\biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\upsilon \biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},\upsilon \biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} \biggr) ,\upsilon\biggr). \end{aligned} \right . \end{aligned} \right \} \end{aligned}$$

From (4.5),

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a}' \biggl( \frac{\mathscr{A}_{1}(\mathfrak{D}_{i}\mathscr{X}_{a})}{\mathfrak {D}_{i}}, \upsilon\biggr) = \left \{ \begin{aligned} &\mathfrak{A}_{a}' \bigl(\mathcal{S},{ \mathfrak{D}_{i}}\upsilon\bigr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},{\mathfrak {D}_{i}}^{1-\mathfrak{E}}\upsilon \biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},{\mathfrak {D}_{i}}^{1-3\mathfrak{E}}\upsilon \biggr), \\ &\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} \biggr),{\mathfrak{D}_{i}}^{1-3\mathfrak{E}} \upsilon\biggr), \end{aligned} \right . \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathscr{A}_{1}(\mathfrak{D}_{i}\mathscr{X}_{a})}{\mathfrak{D}_{i}}, \upsilon\biggr) = \left \{ \begin{aligned} &\mathfrak{B}_{a}' \bigl(\mathcal{S},{\mathfrak{D}_{i}}\upsilon\bigr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},{\mathfrak {D}_{i}}^{1-\mathfrak{E}}\upsilon \biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},{\mathfrak {D}_{i}}^{1-3\mathfrak{E}}\upsilon \biggr), \\ &\mathfrak{B}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} \biggr),{\mathfrak{D}_{i}}^{1-3\mathfrak{E}} \upsilon\biggr), \end{aligned} \right . \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathscr{A}_{1}(\mathfrak{D}_{i}\mathscr{X}_{a})}{\mathfrak{D}_{i}}, \upsilon\biggr) = \left \{ \begin{aligned} &\mathfrak{B}_{a}' \bigl(\mathcal{S},{\mathfrak{D}_{i}}\upsilon\bigr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},{\mathfrak {D}_{i}}^{1-\mathfrak{E}}\upsilon \biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}},{\mathfrak {D}_{i}}^{1-3\mathfrak{E}}\upsilon \biggr), \\ &\mathfrak{C}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{3\mathfrak{E}}}{\mathfrak{T}_{1}} \biggl(\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak {E}}}+\frac{1}{ \vert \mathfrak{T}_{1} \vert ^{3\mathfrak{E}}} \biggr),{\mathfrak{D}_{i}}^{1-3\mathfrak{E}} \upsilon\biggr). \end{aligned} \right . \end{aligned} \right \} \end{aligned}$$

Hence (4.6), we have

L E , i = 0 L E , i = 1 1 . T 1 0 T 1 1 0 2 . T 1 1 E E < 1 T 1 E 1 E > 1 3 . T 1 1 3 E 3 E < 1 T 1 3 E 1 3 E > 1 4 . T 1 3 E 1 3 E < 1 T 1 3 E 1 3 E > 1 .

Method: 1 For \(i=0\),

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \biggl(\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{\mathfrak{T}_{1}^{1-0}}{1-\mathfrak{T}_{1}}\upsilon\biggr)= \mathfrak{A}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak {T}_{1}}{1-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{\mathfrak {T}_{1}^{1-0}}{1-\mathfrak{T}_{1}} \upsilon\biggr)=\mathfrak{B}_{a}' \biggl( \frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak{T}_{1}}{1-\mathfrak {T}_{1}}\upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{\mathfrak {T}_{1}^{1-0}}{1-\mathfrak{T}_{1}} \upsilon\biggr)=\mathfrak{C}_{a}' \biggl( \frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak{T}_{1}}{1-\mathfrak {T}_{1}}\upsilon\biggr). \end{aligned} \right \} \end{aligned}$$

Method: 1 For \(i=1\),

$$\begin{aligned} \left . \begin{aligned}& \mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \biggl(\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{((\mathfrak{T}_{1})^{-1})^{1-1}}{1-(\mathfrak {T}_{1})^{-1}}\upsilon\biggr) = \mathfrak{A}_{a}' \biggl(\frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak {T}_{1}}{\mathfrak{T}_{1}-1} \upsilon\biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{((\mathfrak {T}_{1})^{-1})^{1-1}}{1-(\mathfrak{T}_{1})^{-1}} \upsilon\biggr)= \mathfrak{B}_{a}' \biggl( \frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak{T}_{1}}{\mathfrak {T}_{1}-1}\upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{((\mathfrak {T}_{1})^{-1})^{1-1}}{1-(\mathfrak{T}_{1})^{-1}} \upsilon\biggr)= \mathfrak{C}_{a}' \biggl( \frac{\mathcal{S}}{\mathfrak{T}_{1}},\frac{\mathfrak{T}_{1}}{\mathfrak {T}_{1}-1}\upsilon\biggr). \end{aligned} \right \} \end{aligned}$$

Method: 2 For \(i=0\),

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \biggl(\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{(\mathfrak{T}_{1}^{1-\mathfrak{E}})^{1-0}}{1-(\mathfrak {T}_{1}^{1-\mathfrak{E}})}\upsilon\biggr) \\ &\hphantom{\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr)}=\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak {E}}}{\mathfrak{T}_{1}}\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{\mathfrak {E}}-\mathfrak{T}_{1}^{k}}\upsilon \biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{(\mathfrak{T}_{1}^{1-\mathfrak {E}})^{1-0}}{1-(\mathfrak{T}_{1}^{1-\mathfrak{E}})} \upsilon\biggr) \\ &\hphantom{\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)} =\mathfrak{B}_{a}' \biggl( \frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak {E}}}{\mathfrak{T}_{1}}\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{\mathfrak {E}}-\mathfrak{T}_{1}}\upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{(\mathfrak{T}_{1}^{1-\mathfrak {E}})^{1-0}}{1-(\mathfrak{T}_{1}^{1-\mathfrak{E}})} \upsilon\biggr) \\ &\hphantom{\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)}=\mathfrak{C}_{a}' \biggl( \frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak {E}}}{\mathfrak{T}_{1}}\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{\mathfrak {E}}-\mathfrak{T}_{1}}\upsilon\biggr). \end{aligned} \right \} \end{aligned}$$

Method: 2 For \(i=1\),

$$\begin{aligned} \left . \begin{aligned} &\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr) \geq\mathfrak{A}_{a}' \biggl(\mathscr{A}_{1}(\mathscr{X}_{a}), \frac{(\mathfrak{T}_{1}^{A-1})^{1-1}}{1-(\mathfrak {T}_{1}^{A-1})}\upsilon\biggr) \\ &\hphantom{\mathfrak{A}_{a} \bigl( \mathscr{A}_{1}(\mathscr{X}_{a})-\mathcal{A}_{1}( \mathscr{X}_{a}), \upsilon\bigr)}=\mathfrak{A}_{a}' \biggl(\frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak {E}}}{\mathfrak{T}_{1}}\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}^{k}-\mathfrak {T}_{1}^{a}}\upsilon \biggr), \\ &\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{B}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{(\mathfrak {T}_{1}^{A-1})^{1-1}}{1-(\mathfrak{T}_{1}^{A-1})} \upsilon\biggr) \\ &\hphantom{\mathfrak{B}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)}=\mathfrak{B}_{a}' \biggl( \frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak {E}}}{\mathfrak{T}_{1}}\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}-\mathfrak {T}_{1}^{a}}\upsilon\biggr), \\ &\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr) \leq\mathfrak{C}_{a}' \biggl( \mathscr{A}_{1}(\mathscr{X}_{a}),\frac{(\mathfrak {T}_{1}^{A-1})^{1-1}}{1-(\mathfrak{T}_{1}^{A-1})} \upsilon\biggr) \\ &\hphantom{\mathfrak{C}_{a} \bigl(\mathscr{A}_{1}( \mathscr{X}_{a})-\mathcal{A}_{1}(\mathscr{X}_{a}), \upsilon\bigr)}=\mathfrak{C}_{a}' \biggl( \frac{\mathcal{S} \Vert \mathscr{X}_{a} \Vert ^{\mathfrak {E}}}{\mathfrak{T}_{1}}\frac{3}{ \vert \mathfrak{T}_{1} \vert ^{\mathfrak{E}}},\frac{\mathfrak{T}_{1}}{\mathfrak{T}_{1}-\mathfrak {T}_{1}^{a}}\upsilon\biggr). \end{aligned} \right \} \end{aligned}$$

 □

5 Conclusion

This paper has presented a novel approach for analyzing the stability of the Euler-Lagrange additive FE within neutrosophic normed spaces, addressing a critical need in the realm of uncertainty modeling and functional analysis. The investigation delves into the existence of solutions for this equation and explores its Ulam-Hyers stability within neutrosophic normed spaces. The results are obtained by applying two distinct approaches: direct and fixed point techniques. The findings presented in this article establish the relationship between four distinct areas of research: FEs, neutrosophic normed spaces, Ulam-Hyers stability, and fixed point theory. The stability analysis of this equation in neutrosophic normed spaces is unique, given the absence of prior research on the stability of equations employing neutrosophic concepts. This paper contributes to the broader advancement of neutrosophic mathematics by offering new perspectives and methodologies for analyzing functional equations in nonclassical settings. Our work opens up avenues for further research and exploration, inviting interdisciplinary collaboration and innovation in the fields of mathematics, uncertainty modeling, and system analysis.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  Google Scholar 

  3. Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33(1), 37–45 (1989)

    Article  MathSciNet  Google Scholar 

  4. Smarandache, F.: Neutrosophy: Neutrosophic Probability Set and Logic: Analytic Synthesis and Synthetic Analysis (1998)

    Google Scholar 

  5. Smarandache, F.: A unifying field in logics: neutrosophic logic. In: Philosophy, pp. 1–141. American Research Press (1999)

    Google Scholar 

  6. Katsaras, A.K.: Fuzzy topological vector spaces. Fuzzy Sets Syst. 12, 143–154 (1984)

    Article  MathSciNet  Google Scholar 

  7. Saadati, R., Park, J.H.: On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 27, 331–344 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bera, T., Mahapatra, N.K.: On neutrosophic soft linear spaces. Fuzzy Inf. Eng. 9(3), 299–324 (2017)

    Article  Google Scholar 

  9. Bera, T., Mahapatra, N.K.: Neutrosophic soft normed linear spaces. Neutrosophic Sets Syst. 23, 52–71 (2018)

    Google Scholar 

  10. Agboola, A.A.A., Akwu, A.D., Oyebo, Y.T.: Neutrosophic groups and subgroups. Int. J. Math. Combin. 3, 1–9 (2012)

    Google Scholar 

  11. Agboola, A.A.A., Akinleye, S.A.: Neutrosophic vector spaces. Neutrosophic Sets Syst. 4, 9–17 (2014)

    Google Scholar 

  12. Vasantha, W.B., Smarandache, F.: Neutrosophic Rings. Hexis, Phoenix (2006). ISBN 978-1-931233-20-9

    Google Scholar 

  13. Abobala, M.: Classical homomorphisms between refined neutrosophic rings and neutrosophic rings. Int. J. Neutrosophic Sci. 5, 72–75 (2020)

    Google Scholar 

  14. Abobala, M.: On the representation of neutrosophic matrices by neutrosophic linear transformations. J. Math. 2021, Article ID 5591576 (2021)

    Article  MathSciNet  Google Scholar 

  15. Abobala, M.: Partial foundation of neutrosophic number theory. Neutrosophic Sets Syst. 39, 120–132 (2021)

    Google Scholar 

  16. Vasantha, K., Ilanthenral, K., Smarandache, F.: Neutrosophic graphs: a new dimension to graph theory. Infin. Study (2015)

  17. Smarandache, F.: Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. Infin. Study (2013)

  18. Broumi, S., Sundareswaran, R., Shanmugapriya, M., Singh, P.K., Voskoglou, M., Talea, M.: Faculty performance evaluation through multi-criteria decision analysis using interval-valued fermatean neutrosophic sets. Mathematics 11, 3817 (2023)

    Article  Google Scholar 

  19. Riaz, M., Farid, H.M.A., Antucheviciene, J., Demir, G.: Efficient decision making for sustainable energy using single-valued neutrosophic prioritized interactive aggregation operators. Mathematics 11, 2186 (2023)

    Article  Google Scholar 

  20. Boloş, M.-I., Bradea, I.-A., Delcea, C.: Optimization of financial asset neutrosophic portfolios. Mathematics 9, 1162 (2021)

    Article  Google Scholar 

  21. Zavadskas, E.K., Bausys, R., Lescauskiene, I., Usovaite, A.: MULTIMOORA under interval-valued neutrosophic sets as the basis for the quantitative heuristic evaluation methodology HEBIN. Mathematics 9, 66 (2021)

    Article  Google Scholar 

  22. Amin, B., Salama, A.A., El-Henawy, I.M., Mahfouz, K., Gafar, M.G.: Intelligent neutrosophic diagnostic system for cardiotocography data. Comput. Intell. Neurosci. 2021, 6656770 (2021)

    Article  Google Scholar 

  23. Zhang, S., Ye, J.: Multiple attribute group decision-making models using single-valued neutrosophic and linguistic neutrosophic hybrid element aggregation algorithms. J. Math. 2022, Article ID 1021280 (2022)

    Article  Google Scholar 

  24. Fu, Z., Liu, C., Ruan, S., Chen, K.: Design of neutrosophic self-tuning PID controller for AC permanent magnet synchronous motor based on neutrosophic theory. Math. Probl. Eng. 2021, Article ID 5548184 (2021)

    Article  Google Scholar 

  25. Ishtiaq, U., Javed, K., Uddin, F., de la Sen, M., Ahmed, K., Ali, M.U.: Fixed point results in orthogonal neutrosophic metric spaces. Complexity 2021, Article ID 2809657 (2021)

    Article  Google Scholar 

  26. Jeyaraman, M., Sowndrarajan, S.: Common fixed point results in neutrosophic metric spaces. Neutrosophic Sets Syst. 42, 208–220 (2021)

    Google Scholar 

  27. Salama, A.A., Alblowi, S.A.: Neutrosophic set and neutrosophic topological spaces. IOSR J. Math. 3(4), 31–35 (2012)

    Article  Google Scholar 

  28. Al-Omeri, W.F., Jafari, S., Smarandache, F.: \((\Phi,\Psi)\)-Weak contractions in neutrosophic cone metric spaces via fixed point theorems. Math. Probl. Eng. 2020, Article ID 9216805 (2020)

    Article  MathSciNet  Google Scholar 

  29. Riaz, M., Ishtiaq, U., Park, C., Ahmad, K., Uddin, F.: Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Math. 7(8), 14756–14784 (2022)

    Article  MathSciNet  Google Scholar 

  30. Sharma, A., Kumar, V.: Some remarks on generalised summability using difference operators on neutrosophic normed spaces. J. Ramanujan Soc. Math. Math. Sci. 9, 2 (2022)

    Google Scholar 

  31. Ulam, S.M.: Problems in Modern Mathematics, science editions. Wiley, New York (1964)

    Google Scholar 

  32. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  33. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

    Article  MathSciNet  Google Scholar 

  34. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  Google Scholar 

  35. Gǎvrutǎ, P.: A generalization of the Ulam-Hyers-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

    Article  MathSciNet  Google Scholar 

  36. Rassias, J.M.: On approximately of approximately linear mappings by linear mappings. J. Funct. Anal. 46, 126–130 (1982)

    Article  Google Scholar 

  37. Ravi, K., Arunkumar, M., Rassias, J.M.: On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation. Int. J. Math. Sci. 3(08), 36–47 (2008)

    MathSciNet  Google Scholar 

  38. Aczel, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  39. Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge (2002)

    Book  Google Scholar 

  40. Jung, S.M.: Ulam-Hyers-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)

    Google Scholar 

  41. Pasupathi, A., Konsalraj, J., Fatima, N., Velusamy, V., Mlaiki, N., Souayah, N.: Direct and fixed-point stability-instability of additive functional equation in Banach and quasi-beta normed spaces. Symmetry 2022, 14 (1700)

    Google Scholar 

  42. Agilan, P., Julietraja, K., Mlaiki, N., Mukheimer, A.: Intuitionistic fuzzy stability of an Euler-Lagrange symmetry additive functional equation via direct and fixed point technique (FPT). Symmetry 14, 2454 (2022)

    Article  Google Scholar 

  43. Agilan, P., Almazah, M.A.A., Julietraja, K., Alsinai, A.: Classical and fixed point approach to the stability analysis of a bilateral symmetric additive functional equation in fuzzy and random normed spaces. Mathematics 11, 681 (2023)

    Article  Google Scholar 

  44. Agilan, P., Julietraja, K., Almazah, M.A.A., Alsinai, A.: Stability analysis of a new class of series type additive functional equation in Banach spaces: direct and fixed point techniques. Mathematics 11, 887 (2023). https://doi.org/10.3390/math11040887

    Article  Google Scholar 

  45. Marin, M., Hobiny, A., Abbas, I.: The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics 9, 1606 (2021)

    Article  Google Scholar 

  46. Shannon, A., Dubeau, F., Uysal, M., Özkan, E.: A difference equation model of infectious disease. Int. J. Bioautom. 26, 339–352 (2022)

    Article  Google Scholar 

  47. Marin, M., Seadawy, A., Vlase, S., Chirila, A.: On mixed problem in thermoelasticity of type III for Cosserat media. J. Taibah Univ. Sci. 16(1), 1264–1274 (2022)

    Article  Google Scholar 

  48. Marin, M., Öchsner, A., Vlase, S., Grigorescu, D.O., Tuns, I.: Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies. Contin. Mech. Thermodyn. 35, 1969–1979 (2023)

    Article  MathSciNet  Google Scholar 

  49. Margolis, B., Diaz, J.B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors A. Aloqaily and N. Mlaiki would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

Funding

This research did not receive any external funding.

Author information

Authors and Affiliations

Authors

Contributions

A.A., P.A., K.J., S.A. and N.M. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nabil Mlaiki.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloqaily, A., Agilan, P., Julietraja, K. et al. A novel stability analysis of functional equation in neutrosophic normed spaces. Bound Value Probl 2024, 47 (2024). https://doi.org/10.1186/s13661-024-01854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01854-2

Mathematics Subject Classification

Keywords