Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Entire Bounded Solutions for a Class of Quasilinear Elliptic Equations

Abstract

We consider the problem where is not identically zero. Under the condition that satisfies (H), we show that there exists such that the above-mentioned equation admits at least one solution for all. This extends the results of Laplace equation to the case of-Laplace equation.

[12345678910111213141516]

References

  1. 1.

    Herrero MA, Vázquez JL: On the propagation properties of a nonlinear degenerate parabolic equation. Communications in Partial Differential Equations 1982,7(12):1381–1402. 10.1080/03605308208820255

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Esteban JR, Vázquez JL: On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Analysis 1986,10(11):1303–1325. 10.1016/0362-546X(86)90068-4

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Yang Z: Existence of positive bounded entire solutions for quasilinear elliptic equations. Applied Mathematics and Computation 2004,156(3):743–754. 10.1016/j.amc.2003.06.024

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Guedda M, Véron L: Local and global properties of solutions of quasilinear elliptic equations. Journal of Differential Equations 1988,76(1):159–189. 10.1016/0022-0396(88)90068-X

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Guo ZM: Existence and uniqueness of positive radial solutions for a class of quasilinear elliptic equations. Applicable Analysis 1992,47(2–3):173–189.

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Guo ZM: Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems. Nonlinear Analysis 1992,18(10):957–971. 10.1016/0362-546X(92)90132-X

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Guo ZM, Webb JRL: Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1994,124(1):189–198. 10.1017/S0308210500029280

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Lu Q, Yang Z, Twizell EH: Existence of entire explosive positive solutions of quasi-linear elliptic equations. Applied Mathematics and Computation 2004,148(2):359–372. 10.1016/S0096-3003(02)00852-4

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Bognár G, Drábek P: The -Laplacian equation with superlinear and supercritical growth, multiplicity of radial solutions. Nonlinear Analysis 2005,60(4):719–728. 10.1016/j.na.2004.09.047

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Prashanth S, Sreenadh K: Multiplicity of positive solutions for -Laplace equation with superlinear-type nonlinearity. Nonlinear Analysis 2004,56(6):867–878. 10.1016/j.na.2003.10.026

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Brezis H, Kamin S: Sublinear elliptic equations in . Manuscripta Mathematica 1992,74(1):87–106. 10.1007/BF02567660

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Ambrosetti A, Brezis H, Cerami G: Combined effects of concave and convex nonlinearities in some elliptic problems. Journal of Functional Analysis 1994,122(2):519–543. 10.1006/jfan.1994.1078

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Brezis H, Oswald L: Remarks on sublinear elliptic equations. Nonlinear Analysis 1986,10(1):55–64. 10.1016/0362-546X(86)90011-8

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Bartsch T, Willem M: On an elliptic equation with concave and convex nonlinearities. Proceedings of the American Mathematical Society 1995,123(11):3555–3561. 10.1090/S0002-9939-1995-1301008-2

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Ye D, Zhou F: Invariant criteria for existence of bounded positive solutions. Discrete and Continuous Dynamical Systems. Series A 2005,12(3):413–424.

    MATH  MathSciNet  Google Scholar 

  16. 16.

    El Mabrouk K: Entire bounded solutions for a class of sublinear elliptic equations. Nonlinear Analysis 2004,58(1–2):205–218. 10.1016/j.na.2004.01.004

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zuodong Yang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Yang, Z., Xu, B. Entire Bounded Solutions for a Class of Quasilinear Elliptic Equations. Bound Value Probl 2007, 016407 (2007). https://doi.org/10.1155/2007/16407

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Elliptic Equation