Skip to main content
  • Research Article
  • Open access
  • Published:

Harnack Inequality for the Schrödinger Problem Relative to Strongly Local Riemannian -Homogeneous Forms with a Potential in the Kato Class

Abstract

We define a notion of Kato class of measures relative to a Riemannian strongly local-homogeneous Dirichlet form and we prove a Harnack inequality (on balls that are small enough) for the positive solutions to a Schrödinger-type problem relative to the form with a potential in the Kato class.

[1234567891011121314151617181920]

References

  1. Aizenman M, Simon B: Brownian motion and Harnack inequality for Schrödinger operators. Communications on Pure and Applied Mathematics 1982,35(2):209–273. 10.1002/cpa.3160350206

    Article  MATH  MathSciNet  Google Scholar 

  2. Chiarenza F, Fabes E, Garofalo N: Harnack's inequality for Schrödinger operators and the continuity of solutions. Proceedings of the American Mathematical Society 1986,98(3):415–425.

    MATH  MathSciNet  Google Scholar 

  3. Citti G, Garofalo N, Lanconelli E: Harnack's inequality for sum of squares of vector fields plus a potential. American Journal of Mathematics 1993,115(3):699–734. 10.2307/2375077

    Article  MATH  MathSciNet  Google Scholar 

  4. Biroli M: Weak Kato measures and Schrödinger problems for a Dirichlet form. Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Memorie di Matematica e Applicazioni. Serie V. Parte I 2000, 24: 197–217.

    MathSciNet  Google Scholar 

  5. Biroli M, Mosco U: Sobolev inequalities on homogeneous spaces. Potential Analysis 1995,4(4):311–324. 10.1007/BF01053449

    Article  MATH  MathSciNet  Google Scholar 

  6. Biroli M, Mosco U: A Saint-Venant type principle for Dirichlet forms on discontinuous media. Annali di Matematica Pura ed Applicata. Serie Quarta 1995,169(1):125–181. 10.1007/BF01759352

    Article  MATH  MathSciNet  Google Scholar 

  7. Biroli M: Nonlinear Kato measures and nonlinear subelliptic Schrödinger problems. Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Memorie di Matematica e Applicazioni. Serie V. Parte I 1997, 21: 235–252.

    MathSciNet  Google Scholar 

  8. Malý J: Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points. Commentationes Mathematicae Universitatis Carolinae 1996,37(1):23–42.

    MATH  MathSciNet  Google Scholar 

  9. Malý J, Ziemer WP: Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs. Volume 51. American Mathematical Society, Rhode Island; 1997:xiv+291.

    Book  Google Scholar 

  10. Biroli M, Marchi S: Oscillation estimates relative to-homogeneous forms and Kato measures data. to appear in Le Matematiche

  11. Biroli M: Strongly local nonlinear Dirichlet functionals and forms. to appear in Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Memorie di Matematica e Applicazioni

  12. Biroli M, Vernole PG: Strongly local nonlinear Dirichlet functionals and forms. Advances in Mathematical Sciences and Applications 2005,15(2):655–682.

    MATH  MathSciNet  Google Scholar 

  13. Fukushima M, Ōshima Y, Takeda M: Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics. Volume 19. Walter de Gruyter, Berlin; 1994:x+392.

    Book  Google Scholar 

  14. Coifman RR, Weiss G: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Mathematics. Volume 242. Springer, Berlin; 1971:v+160.

    Google Scholar 

  15. Malý J, Mosco U: Remarks on measure-valued Lagrangians on homogeneous spaces. Ricerche di Matematica 1999,48(suppl.):217–231.

    MATH  MathSciNet  Google Scholar 

  16. Kato T: Schrödinger operators with singular potentials. Israel Journal of Mathematics 1972, 13: 135–148 (1973). 10.1007/BF02760233

    Article  MathSciNet  Google Scholar 

  17. Biroli M, Mosco U: Kato space for Dirichlet forms. Potential Analysis 1999,10(4):327–345. 10.1023/A:1008684104029

    Article  MATH  MathSciNet  Google Scholar 

  18. Biroli M: Schrödinger type and relaxed Dirichlet problems for the subelliptic -Laplacian. Potential Analysis 2001,15(1–2):1–16.

    Article  MATH  MathSciNet  Google Scholar 

  19. Biroli M, Tchou NA: Nonlinear subelliptic problems with measure data. Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Memorie di Matematica e Applicazioni. Serie V. Parte I 1999, 23: 57–82.

    MathSciNet  Google Scholar 

  20. Biroli M, Vernole P: Harnack inequality for harmonic functions relative to a nonlinear -homogeneous Riemannian Dirichlet form. Nonlinear Analysis 2006,64(1):51–68. 10.1016/j.na.2005.06.007

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Biroli.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Biroli, M., Marchi, S. Harnack Inequality for the Schrödinger Problem Relative to Strongly Local Riemannian -Homogeneous Forms with a Potential in the Kato Class. Bound Value Probl 2007, 024806 (2007). https://doi.org/10.1155/2007/24806

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/24806

Keywords