Skip to content


  • Research Article
  • Open Access

Symmetry Theorems and Uniform Rectifiability

Boundary Value Problems20062007:030190

  • Received: 3 June 2006
  • Accepted: 21 September 2006
  • Published:


We study overdetermined boundary conditions for positive solutions to some elliptic partial differential equations of -Laplacian type in a bounded domain . We show that these conditions imply uniform rectifiability of and also that they yield the solution to certain symmetry problems.


  • Boundary Condition
  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation


Authors’ Affiliations

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA
Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA


  1. David G, Semmes S: Singular integrals and rectifiable sets in: Beyond Lipschitz graphs. Astérisque 1991, (193):152.Google Scholar
  2. David G, Semmes S: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs. Volume 38. American Mathematical Society, Rhode Island; 1993:xii+356.View ArticleGoogle Scholar
  3. Serrin J: A symmetry problem in potential theory. Archive for Rational Mechanics and Analysis 1971,43(4):304–318.MATHMathSciNetView ArticleGoogle Scholar
  4. Lewis JL, Vogel AL: On some almost everywhere symmetry theorems. In Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl.. Volume 7. Birkhäuser Boston, Massachusetts; 1992:347–374.View ArticleGoogle Scholar
  5. Lewis JL, Vogel AL: A symmetry theorem revisited. Proceedings of the American Mathematical Society 2002,130(2):443–451. 10.1090/S0002-9939-01-06200-1MATHMathSciNetView ArticleGoogle Scholar
  6. Lewis JL, Vogel AL: Uniqueness in a free boundary problem. Communications in Partial Differential Equations 2006, 31: 1591–1614. 10.1080/03605300500455909MATHMathSciNetView ArticleGoogle Scholar
  7. Vogel AL: Symmetry and regularity for general regions having a solution to certain overdetermined boundary value problems. Atti del Seminario Matematico e Fisico dell'Università di Modena 1992,40(2):443–484.MATHGoogle Scholar
  8. Lewis JL, Vogel AL: On pseudospheres that are quasispheres. Revista Matemática Iberoamericana 2001,17(2):221–255.MATHMathSciNetGoogle Scholar
  9. Bennewitz B: Nonuniqueness in a free boundary problem, Ph.D. thesis. University of Kentucky, Lexington KY; 2006.Google Scholar
  10. Henrot A, Shahgholian H: Existence of classical solutions to a free boundary problem for the -Laplace operator. I. The exterior convex case. Journal für die reine und angewandte Mathematik 2000, 521: 85–97.MATHMathSciNetGoogle Scholar
  11. Henrot A, Shahgholian H: Existence of classical solutions to a free boundary problem for the -Laplace operator. II. The interior convex case. Indiana University Mathematics Journal 2000,49(1):311–323.MATHMathSciNetView ArticleGoogle Scholar
  12. Henrot A, Shahgholian H: The one phase free boundary problem for the -Laplacian with non-constant Bernoulli boundary condition. Transactions of the American Mathematical Society 2002,354(6):2399–2416. 10.1090/S0002-9947-02-02892-1MATHMathSciNetView ArticleGoogle Scholar
  13. Bishop CJ, Jones PW: Harmonic measure and arclength. Annals of Mathematics. Second Series 1990,132(3):511–547. 10.2307/1971428MATHMathSciNetView ArticleGoogle Scholar
  14. David G, Jerison D: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana University Mathematics Journal 1990,39(3):831–845. 10.1512/iumj.1990.39.39040MATHMathSciNetView ArticleGoogle Scholar
  15. Kenig CE, Pipher J: The Dirichlet problem for elliptic equations with drift terms. Publicacions Matemàtiques 2001,45(1):199–217.MATHMathSciNetView ArticleGoogle Scholar
  16. Alt HW, Caffarelli LA, Friedman A: A free boundary problem for quasilinear elliptic equations. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 1984,11(1):1–44.MATHMathSciNetGoogle Scholar
  17. Serrin J: Local behavior of solutions of quasi-linear equations. Acta Mathematica 1964,111(1):247–302. 10.1007/BF02391014MATHMathSciNetView ArticleGoogle Scholar
  18. Garofalo N, Lewis JL: A symmetry result related to some overdetermined boundary value problems. American Journal of Mathematics 1989,111(1):9–33. 10.2307/2374477MATHMathSciNetView ArticleGoogle Scholar
  19. Choe HJ: Regularity for minimizers of certain degenerate functionals with nonstandard growth conditions. Communications in Partial Differential Equations 1991,16(2–3):363–372. 10.1080/03605309108820762MATHMathSciNetView ArticleGoogle Scholar
  20. Manfredi JJ: Regularity for minima of functionals with -growth. Journal of Differential Equations 1988,76(2):203–212. 10.1016/0022-0396(88)90070-8MATHMathSciNetView ArticleGoogle Scholar
  21. Heinonen J, Kilpeläinen T, Martio O: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Oxford University Press, New York; 1993:vi+363.Google Scholar
  22. Kilpeläinen T, Zhong X: Growth of entire -subharmonic functions. Annales Academiæ Scientiarium Fennicæ. Mathematica 2003,28(1):181–192.MATHGoogle Scholar
  23. Kilpeläinen T, Malý J: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Mathematica 1994,172(1):137–161. 10.1007/BF02392793MATHMathSciNetView ArticleGoogle Scholar
  24. Eremenko A, Lewis JL: Uniform limits of certain -harmonic functions with applications to quasiregular mappings. Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 1991,16(2):361–375.MathSciNetView ArticleGoogle Scholar
  25. Gilbarg D, Trudinger NS: Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences. Volume 224. 2nd edition. Springer, Berlin; 1983.View ArticleGoogle Scholar
  26. Mattila P: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics. Volume 44. Cambridge University Press, Cambridge; 1995:xii+343.View ArticleGoogle Scholar
  27. Semmes S: Differentiable function theory on hypersurfaces in (without bounds on their smoothness). Indiana University Mathematics Journal 1990,39(4):985–1004. 10.1512/iumj.1990.39.39047MATHMathSciNetView ArticleGoogle Scholar
  28. Littman W, Stampacchia G, Weinberger HF: Regular points for elliptic equations with discontinuous coefficients. Annali della Scuola Normale Superiore di Pisa. Serie III 1963, 17: 43–77.MATHMathSciNetGoogle Scholar
  29. Gariepy R, Ziemer WP: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis 1977,67(1):25–39. 10.1007/BF00280825MATHMathSciNetView ArticleGoogle Scholar
  30. Hofmann S, Lewis JL: The Dirichlet problem for parabolic operators with singular drift terms. Memoirs of the American Mathematical Society 2001,151(719):viii+113.MathSciNetView ArticleGoogle Scholar
  31. Rivera-Noriega J: Absolute continuity of parabolic measure and area integral estimates in non-cylindrical domains. Indiana University Mathematics Journal 2003,52(2):477–525.MATHMathSciNetView ArticleGoogle Scholar
  32. Bennewitz B, Lewis JL: On weak reverse Hölder inequalities for nondoubling harmonic measures. Complex Variables 2004,49(7–9):571–582.MATHMathSciNetView ArticleGoogle Scholar
  33. Gehring FW: The -integrability of the partial derivatives of a quasiconformal mapping. Acta Mathematica 1973,130(1):265–277. 10.1007/BF02392268MATHMathSciNetView ArticleGoogle Scholar
  34. Danielli D, Petrosyan A: A minimum problem with free boundary for a degenerate quasilinear operator. Calculus of Variations and Partial Differential Equations 2005,23(1):97–124. 10.1007/s00526-004-0294-5MATHMathSciNetView ArticleGoogle Scholar
  35. Mattila P, Melnikov MS, Verdera J: The Cauchy integral, analytic capacity, and uniform rectifiability. Annals of Mathematics. Second Series 1996,144(1):127–136. 10.2307/2118585MATHMathSciNetView ArticleGoogle Scholar
  36. Lewis JL: Uniformly fat sets. Transactions of the American Mathematical Society 1988,308(1):177–196. 10.1090/S0002-9947-1988-0946438-4MATHMathSciNetView ArticleGoogle Scholar
  37. Mateu J, Tolsa X, Verdera J: The planar Cantor sets of zero analytic capacity and the local -theorem. Journal of the American Mathematical Society 2003,16(1):19–28. 10.1090/S0894-0347-02-00401-0MATHMathSciNetView ArticleGoogle Scholar
  38. Nazarov F, Treil S, Volberg A: Accretive system -theorems on nonhomogeneous spaces. Duke Mathematical Journal 2002,113(2):259–312. 10.1215/S0012-7094-02-11323-4MATHMathSciNetView ArticleGoogle Scholar
  39. Tolsa X: Painlevé's problem and the semiadditivity of analytic capacity. Acta Mathematica 2003,190(1):105–149. 10.1007/BF02393237MATHMathSciNetView ArticleGoogle Scholar
  40. Tolsa X: The space for nondoubling measures in terms of a grand maximal operator. Transactions of the American Mathematical Society 2003,355(1):315–348. 10.1090/S0002-9947-02-03131-8MATHMathSciNetView ArticleGoogle Scholar
  41. Feldman M: Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations. Indiana University Mathematics Journal 2001,50(3):1171–1200.MATHMathSciNetView ArticleGoogle Scholar
  42. Wang P-Y: Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are Communications on Pure and Applied Mathematics 2000,53(7):799–810. 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-QMATHMathSciNetView ArticleGoogle Scholar