Skip to content


  • Research Article
  • Open Access

Symmetry Theorems and Uniform Rectifiability

Boundary Value Problems20062007:030190

  • Received: 3 June 2006
  • Accepted: 21 September 2006
  • Published:


We study overdetermined boundary conditions for positive solutions to some elliptic partial differential equations of -Laplacian type in a bounded domain . We show that these conditions imply uniform rectifiability of and also that they yield the solution to certain symmetry problems.


  • Boundary Condition
  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation


Authors’ Affiliations

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA
Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA


  1. David G, Semmes S: Singular integrals and rectifiable sets in: Beyond Lipschitz graphs. Astérisque 1991, (193):152.Google Scholar
  2. David G, Semmes S: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs. Volume 38. American Mathematical Society, Rhode Island; 1993:xii+356.View ArticleGoogle Scholar
  3. Serrin J: A symmetry problem in potential theory. Archive for Rational Mechanics and Analysis 1971,43(4):304–318.MATHMathSciNetView ArticleGoogle Scholar
  4. Lewis JL, Vogel AL: On some almost everywhere symmetry theorems. In Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl.. Volume 7. Birkhäuser Boston, Massachusetts; 1992:347–374.View ArticleGoogle Scholar
  5. Lewis JL, Vogel AL: A symmetry theorem revisited. Proceedings of the American Mathematical Society 2002,130(2):443–451. 10.1090/S0002-9939-01-06200-1MATHMathSciNetView ArticleGoogle Scholar
  6. Lewis JL, Vogel AL: Uniqueness in a free boundary problem. Communications in Partial Differential Equations 2006, 31: 1591–1614. 10.1080/03605300500455909MATHMathSciNetView ArticleGoogle Scholar
  7. Vogel AL: Symmetry and regularity for general regions having a solution to certain overdetermined boundary value problems. Atti del Seminario Matematico e Fisico dell'Università di Modena 1992,40(2):443–484.MATHGoogle Scholar
  8. Lewis JL, Vogel AL: On pseudospheres that are quasispheres. Revista Matemática Iberoamericana 2001,17(2):221–255.MATHMathSciNetGoogle Scholar
  9. Bennewitz B: Nonuniqueness in a free boundary problem, Ph.D. thesis. University of Kentucky, Lexington KY; 2006.Google Scholar
  10. Henrot A, Shahgholian H: Existence of classical solutions to a free boundary problem for the -Laplace operator. I. The exterior convex case. Journal für die reine und angewandte Mathematik 2000, 521: 85–97.MATHMathSciNetGoogle Scholar
  11. Henrot A, Shahgholian H: Existence of classical solutions to a free boundary problem for the -Laplace operator. II. The interior convex case. Indiana University Mathematics Journal 2000,49(1):311–323.MATHMathSciNetView ArticleGoogle Scholar
  12. Henrot A, Shahgholian H: The one phase free boundary problem for the -Laplacian with non-constant Bernoulli boundary condition. Transactions of the American Mathematical Society 2002,354(6):2399–2416. 10.1090/S0002-9947-02-02892-1MATHMathSciNetView ArticleGoogle Scholar
  13. Bishop CJ, Jones PW: Harmonic measure and arclength. Annals of Mathematics. Second Series 1990,132(3):511–547. 10.2307/1971428MATHMathSciNetView ArticleGoogle Scholar
  14. David G, Jerison D: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana University Mathematics Journal 1990,39(3):831–845. 10.1512/iumj.1990.39.39040MATHMathSciNetView ArticleGoogle Scholar
  15. Kenig CE, Pipher J: The Dirichlet problem for elliptic equations with drift terms. Publicacions Matemàtiques 2001,45(1):199–217.MATHMathSciNetView ArticleGoogle Scholar
  16. Alt HW, Caffarelli LA, Friedman A: A free boundary problem for quasilinear elliptic equations. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 1984,11(1):1–44.MATHMathSciNetGoogle Scholar
  17. Serrin J: Local behavior of solutions of quasi-linear equations. Acta Mathematica 1964,111(1):247–302. 10.1007/BF02391014MATHMathSciNetView ArticleGoogle Scholar
  18. Garofalo N, Lewis JL: A symmetry result related to some overdetermined boundary value problems. American Journal of Mathematics 1989,111(1):9–33. 10.2307/2374477MATHMathSciNetView ArticleGoogle Scholar
  19. Choe HJ: Regularity for minimizers of certain degenerate functionals with nonstandard growth conditions. Communications in Partial Differential Equations 1991,16(2–3):363–372. 10.1080/03605309108820762MATHMathSciNetView ArticleGoogle Scholar
  20. Manfredi JJ: Regularity for minima of functionals with -growth. Journal of Differential Equations 1988,76(2):203–212. 10.1016/0022-0396(88)90070-8MATHMathSciNetView ArticleGoogle Scholar
  21. Heinonen J, Kilpeläinen T, Martio O: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Oxford University Press, New York; 1993:vi+363.Google Scholar
  22. Kilpeläinen T, Zhong X: Growth of entire -subharmonic functions. Annales Academiæ Scientiarium Fennicæ. Mathematica 2003,28(1):181–192.MATHGoogle Scholar
  23. Kilpeläinen T, Malý J: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Mathematica 1994,172(1):137–161. 10.1007/BF02392793MATHMathSciNetView ArticleGoogle Scholar
  24. Eremenko A, Lewis JL: Uniform limits of certain -harmonic functions with applications to quasiregular mappings. Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 1991,16(2):361–375.MathSciNetView ArticleGoogle Scholar
  25. Gilbarg D, Trudinger NS: Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences. Volume 224. 2nd edition. Springer, Berlin; 1983.View ArticleGoogle Scholar
  26. Mattila P: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics. Volume 44. Cambridge University Press, Cambridge; 1995:xii+343.View ArticleGoogle Scholar
  27. Semmes S: Differentiable function theory on hypersurfaces in (without bounds on their smoothness). Indiana University Mathematics Journal 1990,39(4):985–1004. 10.1512/iumj.1990.39.39047MATHMathSciNetView ArticleGoogle Scholar
  28. Littman W, Stampacchia G, Weinberger HF: Regular points for elliptic equations with discontinuous coefficients. Annali della Scuola Normale Superiore di Pisa. Serie III 1963, 17: 43–77.MATHMathSciNetGoogle Scholar
  29. Gariepy R, Ziemer WP: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis 1977,67(1):25–39. 10.1007/BF00280825MATHMathSciNetView ArticleGoogle Scholar
  30. Hofmann S, Lewis JL: The Dirichlet problem for parabolic operators with singular drift terms. Memoirs of the American Mathematical Society 2001,151(719):viii+113.MathSciNetView ArticleGoogle Scholar
  31. Rivera-Noriega J: Absolute continuity of parabolic measure and area integral estimates in non-cylindrical domains. Indiana University Mathematics Journal 2003,52(2):477–525.MATHMathSciNetView ArticleGoogle Scholar
  32. Bennewitz B, Lewis JL: On weak reverse Hölder inequalities for nondoubling harmonic measures. Complex Variables 2004,49(7–9):571–582.MATHMathSciNetView ArticleGoogle Scholar
  33. Gehring FW: The -integrability of the partial derivatives of a quasiconformal mapping. Acta Mathematica 1973,130(1):265–277. 10.1007/BF02392268MATHMathSciNetView ArticleGoogle Scholar
  34. Danielli D, Petrosyan A: A minimum problem with free boundary for a degenerate quasilinear operator. Calculus of Variations and Partial Differential Equations 2005,23(1):97–124. 10.1007/s00526-004-0294-5MATHMathSciNetView ArticleGoogle Scholar
  35. Mattila P, Melnikov MS, Verdera J: The Cauchy integral, analytic capacity, and uniform rectifiability. Annals of Mathematics. Second Series 1996,144(1):127–136. 10.2307/2118585MATHMathSciNetView ArticleGoogle Scholar
  36. Lewis JL: Uniformly fat sets. Transactions of the American Mathematical Society 1988,308(1):177–196. 10.1090/S0002-9947-1988-0946438-4MATHMathSciNetView ArticleGoogle Scholar
  37. Mateu J, Tolsa X, Verdera J: The planar Cantor sets of zero analytic capacity and the local -theorem. Journal of the American Mathematical Society 2003,16(1):19–28. 10.1090/S0894-0347-02-00401-0MATHMathSciNetView ArticleGoogle Scholar
  38. Nazarov F, Treil S, Volberg A: Accretive system -theorems on nonhomogeneous spaces. Duke Mathematical Journal 2002,113(2):259–312. 10.1215/S0012-7094-02-11323-4MATHMathSciNetView ArticleGoogle Scholar
  39. Tolsa X: Painlevé's problem and the semiadditivity of analytic capacity. Acta Mathematica 2003,190(1):105–149. 10.1007/BF02393237MATHMathSciNetView ArticleGoogle Scholar
  40. Tolsa X: The space for nondoubling measures in terms of a grand maximal operator. Transactions of the American Mathematical Society 2003,355(1):315–348. 10.1090/S0002-9947-02-03131-8MATHMathSciNetView ArticleGoogle Scholar
  41. Feldman M: Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations. Indiana University Mathematics Journal 2001,50(3):1171–1200.MATHMathSciNetView ArticleGoogle Scholar
  42. Wang P-Y: Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are Communications on Pure and Applied Mathematics 2000,53(7):799–810. 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-QMATHMathSciNetView ArticleGoogle Scholar


© J. L. Lewis and A. L. Vogel 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.