Skip to main content


Existence and Multiplicity Results for Degenerate Elliptic Equations with Dependence on the Gradient

Article metrics

  • 1090 Accesses

  • 5 Citations


We study the existence of positive solutions for a class of degenerate nonlinear elliptic equations with gradient dependence. For this purpose, we combine a blowup argument, the strong maximum principle, and Liouville-type theorems to obtain a priori estimates.



  1. 1.

    Dong W: A priori estimates and existence of positive solutions for a quasilinear elliptic equation. Journal of the London Mathematical Society 2005,72(3):645–662. 10.1112/S0024610705006848

  2. 2.

    Ruiz D: A priori estimates and existence of positive solutions for strongly nonlinear problems. Journal of Differential Equations 2004,199(1):96–114. 10.1016/j.jde.2003.10.021

  3. 3.

    Azizieh C, Clément P: A priori estimates and continuation methods for positive solutions of -Laplace equations. Journal of Differential Equations 2002,179(1):213–245. 10.1006/jdeq.2001.4029

  4. 4.

    Takeuchi S: Positive solutions of a degenerate elliptic equation with logistic reaction. Proceedings of the American Mathematical Society 2001,129(2):433–441. 10.1090/S0002-9939-00-05723-3

  5. 5.

    Dong W, Chen JT: Existence and multiplicity results for a degenerate elliptic equation. Acta Mathematica Sinica 2006,22(3):665–670. 10.1007/s10114-005-0696-0

  6. 6.

    Rabinowitz PH: Pairs of positive solutions of nonlinear elliptic partial differential equations. Indiana University Mathematics Journal 1973/1974, 23: 173–186. 10.1512/iumj.1973.23.23014

  7. 7.

    Díaz JI, Saá JE: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. [Existence and uniqueness of positive solutions of some quasilinear elliptic equations]. Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique 1987,305(12):521–524.

  8. 8.

    García Melián J, de Lis JS: Uniqueness to quasilinear problems for the -Laplacian in radially symmetric domains. Nonlinear Analysis. Theory, Methods & Applications 2001,43(7):803–835. 10.1016/S0362-546X(99)00236-9

  9. 9.

    Guo Z, Zhang H: On the global structure of the set of positive solutions for some quasilinear elliptic boundary value problems. Nonlinear Analysis. Theory, Methods & Applications 2001,46(7):1021–1037. 10.1016/S0362-546X(00)00160-7

  10. 10.

    Takeuchi S, Yamada Y: Asymptotic properties of a reaction-diffusion equation with degenerate -Laplacian. Nonlinear Analysis. Theory, Methods & Applications 2000,42(1):41–61. 10.1016/S0362-546X(98)00329-0

  11. 11.

    Takeuchi S: Multiplicity result for a degenerate elliptic equation with logistic reaction. Journal of Differential Equations 2001,173(1):138–144. 10.1006/jdeq.2000.3914

  12. 12.

    Takeuchi S: Stationary profiles of degenerate problems with inhomogeneous saturation values. Nonlinear Analysis. Theory, Methods & Applications 2005,63(5–7):e1009-e1016.

  13. 13.

    Kamin S, Véron L: Flat core properties associated to the -Laplace operator. Proceedings of the American Mathematical Society 1993,118(4):1079–1085.

  14. 14.

    Serrin J, Zou H: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Mathematica 2002,189(1):79–142. 10.1007/BF02392645

  15. 15.

    Trudinger NS: On Harnack type inequalities and their application to quasilinear elliptic equations. Communications on Pure and Applied Mathematics 1967, 20: 721–747. 10.1002/cpa.3160200406

  16. 16.

    Damascelli L: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 1998,15(4):493–516.

  17. 17.

    Vázquez JL: A strong maximum principle for some quasilinear elliptic equations. Applied Mathematics and Optimization 1984,12(3):191–202.

  18. 18.

    Lieberman GM: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Analysis. Theory, Methods & Applications 1988,12(11):1203–1219. 10.1016/0362-546X(88)90053-3

  19. 19.

    Amann H, López-Gómez J: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. Journal of Differential Equations 1998,146(2):336–374. 10.1006/jdeq.1998.3440

Download references

Author information

Correspondence to Leonelo Iturriaga.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Maximum Principle