Skip to main content

Advertisement

Existence and Multiplicity Results for Degenerate Elliptic Equations with Dependence on the Gradient

Article metrics

  • 1090 Accesses

  • 5 Citations

Abstract

We study the existence of positive solutions for a class of degenerate nonlinear elliptic equations with gradient dependence. For this purpose, we combine a blowup argument, the strong maximum principle, and Liouville-type theorems to obtain a priori estimates.

[12345678910111213141516171819]

References

  1. 1.

    Dong W: A priori estimates and existence of positive solutions for a quasilinear elliptic equation. Journal of the London Mathematical Society 2005,72(3):645–662. 10.1112/S0024610705006848

  2. 2.

    Ruiz D: A priori estimates and existence of positive solutions for strongly nonlinear problems. Journal of Differential Equations 2004,199(1):96–114. 10.1016/j.jde.2003.10.021

  3. 3.

    Azizieh C, Clément P: A priori estimates and continuation methods for positive solutions of -Laplace equations. Journal of Differential Equations 2002,179(1):213–245. 10.1006/jdeq.2001.4029

  4. 4.

    Takeuchi S: Positive solutions of a degenerate elliptic equation with logistic reaction. Proceedings of the American Mathematical Society 2001,129(2):433–441. 10.1090/S0002-9939-00-05723-3

  5. 5.

    Dong W, Chen JT: Existence and multiplicity results for a degenerate elliptic equation. Acta Mathematica Sinica 2006,22(3):665–670. 10.1007/s10114-005-0696-0

  6. 6.

    Rabinowitz PH: Pairs of positive solutions of nonlinear elliptic partial differential equations. Indiana University Mathematics Journal 1973/1974, 23: 173–186. 10.1512/iumj.1973.23.23014

  7. 7.

    Díaz JI, Saá JE: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. [Existence and uniqueness of positive solutions of some quasilinear elliptic equations]. Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique 1987,305(12):521–524.

  8. 8.

    García Melián J, de Lis JS: Uniqueness to quasilinear problems for the -Laplacian in radially symmetric domains. Nonlinear Analysis. Theory, Methods & Applications 2001,43(7):803–835. 10.1016/S0362-546X(99)00236-9

  9. 9.

    Guo Z, Zhang H: On the global structure of the set of positive solutions for some quasilinear elliptic boundary value problems. Nonlinear Analysis. Theory, Methods & Applications 2001,46(7):1021–1037. 10.1016/S0362-546X(00)00160-7

  10. 10.

    Takeuchi S, Yamada Y: Asymptotic properties of a reaction-diffusion equation with degenerate -Laplacian. Nonlinear Analysis. Theory, Methods & Applications 2000,42(1):41–61. 10.1016/S0362-546X(98)00329-0

  11. 11.

    Takeuchi S: Multiplicity result for a degenerate elliptic equation with logistic reaction. Journal of Differential Equations 2001,173(1):138–144. 10.1006/jdeq.2000.3914

  12. 12.

    Takeuchi S: Stationary profiles of degenerate problems with inhomogeneous saturation values. Nonlinear Analysis. Theory, Methods & Applications 2005,63(5–7):e1009-e1016.

  13. 13.

    Kamin S, Véron L: Flat core properties associated to the -Laplace operator. Proceedings of the American Mathematical Society 1993,118(4):1079–1085.

  14. 14.

    Serrin J, Zou H: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Mathematica 2002,189(1):79–142. 10.1007/BF02392645

  15. 15.

    Trudinger NS: On Harnack type inequalities and their application to quasilinear elliptic equations. Communications on Pure and Applied Mathematics 1967, 20: 721–747. 10.1002/cpa.3160200406

  16. 16.

    Damascelli L: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 1998,15(4):493–516.

  17. 17.

    Vázquez JL: A strong maximum principle for some quasilinear elliptic equations. Applied Mathematics and Optimization 1984,12(3):191–202.

  18. 18.

    Lieberman GM: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Analysis. Theory, Methods & Applications 1988,12(11):1203–1219. 10.1016/0362-546X(88)90053-3

  19. 19.

    Amann H, López-Gómez J: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. Journal of Differential Equations 1998,146(2):336–374. 10.1006/jdeq.1998.3440

Download references

Author information

Correspondence to Leonelo Iturriaga.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Maximum Principle