Skip to main content


A Note on the Relaxation-Time Limit of the Isothermal Euler Equations

Article metrics

  • 1176 Accesses

  • 3 Citations


This work is concerned with the relaxation-time limit of the multidimensional isothermal Euler equations with relaxation. We show that Coulombel-Goudon's results (2007) can hold in the weaker and more general Sobolev space of fractional order. The method of proof used is the Littlewood-Paley decomposition.



  1. 1.

    Coulombel J-F, Goudon T: The strong relaxation limit of the multidimensional isothermal Euler equations. Transactions of the American Mathematical Society 2007,359(2):637–648. 10.1090/S0002-9947-06-04028-1

  2. 2.

    Junca S, Rascle M: Strong relaxation of the isothermal Euler system to the heat equation. Zeitschrift für Angewandte Mathematik und Physik 2002,53(2):239–264. 10.1007/s00033-002-8154-7

  3. 3.

    Marcati P, Milani A: The one-dimensional Darcy's law as the limit of a compressible Euler flow. Journal of Differential Equations 1990,84(1):129–147. 10.1016/0022-0396(90)90130-H

  4. 4.

    Hanouzet B, Natalini R: Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Archive for Rational Mechanics and Analysis 2003,169(2):89–117. 10.1007/s00205-003-0257-6

  5. 5.

    Sideris TC, Thomases B, Wang D: Long time behavior of solutions to the 3D compressible Euler with damping. Communications in Partial Differential Equations 2003,28(3–4):795–816. 10.1081/PDE-120020497

  6. 6.

    Yong W-A: Entropy and global existence for hyperbolic balance laws. Archive for Rational Mechanics and Analysis 2004,172(2):247–266. 10.1007/s00205-003-0304-3

  7. 7.

    Fang DY, Xu J: Existence and asymptotic behavior ofsolutions to the multidimensional compressible Euler equations with damping.

  8. 8.

    Simon J: Compact sets in the space. Annali di Matematica Pura ed Applicata 1987,146(1):65–96.

  9. 9.

    Chemin J-Y: Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and Its Applications. Volume 14. The Clarendon Press, Oxford University Press, New York, NY, USA; 1998:x+187.

  10. 10.

    Shizuta Y, Kawashima S: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Mathematical Journal 1985,14(2):249–275.

Download references

Author information

Correspondence to Jiang Xu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Sobolev Space