Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Properties of Positive Solution for Nonlocal Reaction-Diffusion Equation with Nonlocal Boundary

Abstract

This paper considers the properties of positive solutions for a nonlocal equation with nonlocal boundary condition on. The conditions on the existence and nonexistence of global positive solutions are given. Moreover, we establish the uniform blow-up estimates for the blow-up solution.

[123456789101112131415161718192021]

References

  1. 1.

    Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, NY, USA; 1992:xvi+777.

    Google Scholar 

  2. 2.

    Souplet P: Blow-up in nonlocal reaction-diffusion equations. SIAM Journal on Mathematical Analysis 1998,29(6):1301–1334. 10.1137/S0036141097318900

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Souplet P: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. Journal of Differential Equations 1999,153(2):374–406. 10.1006/jdeq.1998.3535

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Wang M, Wang Y: Properties of positive solutions for non-local reaction-diffusion problems. Mathematical Methods in the Applied Sciences 1996,19(14):1141–1156. 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Souplet P: Uniform blow-up profile and boundary behaviour for a non-local reaction-diffusion equation with critical damping. Mathematical Methods in the Applied Sciences 2004,27(15):1819–1829. 10.1002/mma.567

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Day WA: A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Quarterly of Applied Mathematics 1983,40(4):468–475.

    MATH  Google Scholar 

  7. 7.

    Day WA: Heat Conduction within Linear Thermoelasticity, Springer Tracts in Natural Philosophy. Volume 30. Springer, New York, NY, USA; 1985:viii+83.

    Google Scholar 

  8. 8.

    Friedman A: Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Quarterly of Applied Mathematics 1986,44(3):401–407.

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Deng K: Comparison principle for some nonlocal problems. Quarterly of Applied Mathematics 1992,50(3):517–522.

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Seo S: Blowup of solutions to heat equations with nonlocal boundary conditions. Kobe Journal of Mathematics 1996,13(2):123–132.

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Seo S: Global existence and decreasing property of boundary values of solutions to parabolic equations with nonlocal boundary conditions. Pacific Journal of Mathematics 2000,193(1):219–226. 10.2140/pjm.2000.193.219

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Lin Z, Liu Y: Uniform blowup profiles for diffusion equations with nonlocal source and nonlocal boundary. Acta Mathematica Scientia. Series B 2004,24(3):443–450.

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Carlson DE: Linear thermoelasticity. In Encyclopedia of Physics. Volume vIa/2. Springer, Berlin, Germany; 1972:319.

    Google Scholar 

  14. 14.

    Pao CV: Dynamics of reaction-diffusion equations with nonlocal boundary conditions. Quarterly of Applied Mathematics 1995,53(1):173–186.

    MATH  MathSciNet  Google Scholar 

  15. 15.

    Pao CV: Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions. Journal of Computational and Applied Mathematics 1998,88(1):225–238. 10.1016/S0377-0427(97)00215-X

    MATH  MathSciNet  Article  Google Scholar 

  16. 16.

    Pao CV: Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. Journal of Computational and Applied Mathematics 2001,136(1–2):227–243. 10.1016/S0377-0427(00)00614-2

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Wang Y, Mu C, Xiang Z: Blowup of solutions to a porous medium equation with nonlocal boundary condition. to appear in Applied Mathematics and Computation

  18. 18.

    Xiang Z, Hu X, Mu C: Neumann problem for reaction-diffusion systems with nonlocal nonlinear sources. Nonlinear Analysis 2005,61(7):1209–1224. 10.1016/j.na.2005.01.098

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Xiang Z, Chen Q, Mu C: Blowup properties for several diffusion systems with localised sources. The ANZIAM Journal 2006,48(1):37–56. 10.1017/S1446181100003400

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Yin H-M: On a class of parabolic equations with nonlocal boundary conditions. Journal of Mathematical Analysis and Applications 2004,294(2):712–728. 10.1016/j.jmaa.2004.03.021

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Zhou J, Mu C, Li Z: Blowup for degenerate and singular parabolic system with nonlocal source. Boundary Value Problems 2006, 2006: 19 pages.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulan Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wang, Y., Mu, C. & Xiang, Z. Properties of Positive Solution for Nonlocal Reaction-Diffusion Equation with Nonlocal Boundary. Bound Value Probl 2007, 064579 (2007). https://doi.org/10.1155/2007/64579

Download citation

Keywords

  • Boundary Condition
  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation