Skip to main content

On the Sets of Regularity of Solutions for a Class of Degenerate Nonlinear Elliptic Fourth-Order Equations with Data

Abstract

We establish Hölder continuity of generalized solutions of the Dirichlet problem, associated to a degenerate nonlinear fourth-order equation in an open bounded set, with data, on the subsets of where the behavior of weights and of the data is regular enough.

[123456789101112]

References

  1. 1.

    Kovalevsky A, Nicolosi F: Existence of solutions of some degenerate nonlinear elliptic fourth-order equations with-data. Applicable Analysis 2002,81(4):905–914. 10.1080/0003681021000004492

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Kovalevsky A, Nicolosi F: On the sets of boundedness of solutions for a class of degenerate nonlinear elliptic fourth-order equations with-data. Fundamentalnaya I Prikladnaya Matematika 2006,12(4):99–112.

    Google Scholar 

  3. 3.

    Kovalevsky A, Nicolosi F: Existence and regularity of solutions to a system of degenerate nonlinear fourth-order equations. Nonlinear Analysis. Theory, Methods & Applications 2005,61(3):281–307. 10.1016/j.na.2004.07.044

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Skrypnik IV: Higher order quasilinear elliptic equations with continuous generalized solutions. Differential Equations 1978,14(6):786–795.

    MATH  MathSciNet  Google Scholar 

  5. 5.

    Bonafede S, D'Asero S: Hölder continuity of solutions for a class of nonlinear elliptic variational inequalities of high order. Nonlinear Analysis. Theory, Methods & Applications 2001,44(5):657–667. 10.1016/S0362-546X(99)00298-9

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Skrypnik IV, Nicolosi F: On the regularity of solutions of higher-order degenerate nonlinear elliptic equations. Dopovīdī Natsīonal'noï Akademīï Nauk Ukraïni 1997, (3):24–28.

  7. 7.

    Kovalevsky A, Nicolosi F: On Hölder continuity of solutions of equations and variational inequalities with degenerate nonlinear elliptic high order operators. In Problemi Attuali dell'Analisi e della Fisica Matematica. Aracne Editrice, Rome, Italy; 2000:205–220.

    Google Scholar 

  8. 8.

    Guglielmino F, Nicolosi F: -solutions of boundary value problems for degenerate elliptic operators. Ricerche di Matematica 1987,36(supplement):59–72.

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Guglielmino F, Nicolosi F: Existence theorems for boundary value problems associated with quasilinear elliptic equations. Ricerche di Matematica 1988,37(1):157–176.

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Lions J-L: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, France; 1969:xx+554.

    Google Scholar 

  11. 11.

    Skrypnik IV: Nonlinear Elliptic Equations of Higher Order. Naukova Dumka, Kiev, Ukraine; 1973.

    Google Scholar 

  12. 12.

    Ladyzhenskaya OA, Ural'tseva NN: Linear and Quasilinear Elliptic Equations. Academic Press, New York, NY, USA; 1968:xviii+495.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S Bonafede.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Bonafede, S., Nicolosi, F. On the Sets of Regularity of Solutions for a Class of Degenerate Nonlinear Elliptic Fourth-Order Equations with Data. Bound Value Probl 2007, 065825 (2007). https://doi.org/10.1155/2007/65825

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Generalize Solution
  • Functional Equation