Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Simultaneous versus Nonsimultaneous Blowup for a System of Heat Equations Coupled Boundary Flux

Abstract

This paper deals with a semilinear parabolic system in a bounded interval, completely coupled at the boundary with exponential type. We characterize completely the range of parameters for which nonsimultaneous and simultaneous blowup occur.

[12345678910]

References

  1. 1.

    Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, NY, USA; 1992:xvi+777.

    Google Scholar 

  2. 2.

    Brändle C, Quirós F, Rossi JD: Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure and Applied Analysis 2005,4(3):523–536.

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Du L, Yao Z-A: Note on non-simultaneous blow-up for a reaction-diffusion system. to appear in Applied Mathematics Letters

  4. 4.

    Quirós F, Rossi JD: Non-simultaneous blow-up in a nonlinear parabolic system. Advanced Nonlinear Studies 2003,3(3):397–418.

    MATH  MathSciNet  Google Scholar 

  5. 5.

    Deng K: Blow-up rates for parabolic systems. Zeitschrift für Angewandte Mathematik und Physik 1996,47(1):132–143. 10.1007/BF00917578

    MATH  Article  Google Scholar 

  6. 6.

    Zhao L, Zheng S: Blow-up estimates for system of heat equations coupled via nonlinear boundary flux. Nonlinear Analysis 2003,54(2):251–259. 10.1016/S0362-546X(03)00060-9

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Rial DF, Rossi JD: Blow-up results and localization of blow-up points in an-dimensional smooth domain. Duke Mathematical Journal 1997,88(2):391–405. 10.1215/S0012-7094-97-08816-5

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Hu B, Yin H-M: The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition. Transactions of the American Mathematical Society 1994,346(1):117–135. 10.2307/2154944

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Lieberman GM: Second Order Parabolic Differential Equations. World Scientific, River Edge, NJ, USA; 1996:xii+439.

    Google Scholar 

  10. 10.

    Acosta G, Rossi JD: Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition. Zeitschrift für Angewandte Mathematik und Physik 1997,48(5):711–724. 10.1007/s000330050060

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mingshu Fan.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Fan, M., Du, L. Simultaneous versus Nonsimultaneous Blowup for a System of Heat Equations Coupled Boundary Flux. Bound Value Probl 2007, 075258 (2007). https://doi.org/10.1155/2007/75258

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Heat Equation