Skip to content


  • Research Article
  • Open Access

A Boundary Harnack Principle for Infinity-Laplacian and Some Related Results

Boundary Value Problems20072007:078029

  • Received: 27 June 2006
  • Accepted: 27 October 2006
  • Published:


We prove a boundary comparison principle for positive infinity-harmonic functions for smooth boundaries. As consequences, we obtain (a) a doubling property for certain positive infinity-harmonic functions in smooth bounded domains and the half-space, and (b) the optimality of blowup rates of Aronsson's examples of singular solutions in cones.


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Related Result


Authors’ Affiliations

Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA


  1. Bhattacharya T:On the properties of -harmonic functions and an application to capacitary convex rings. Electronic Journal of Differential Equations 2002,2002(101):1-22.Google Scholar
  2. Bauman P: Positive solutions of elliptic equations in nondivergence form and their adjoints. Arkiv för Matematik 1984,22(2):153-173. 10.1007/BF02384378MATHMathSciNetView ArticleGoogle Scholar
  3. Caffarelli L, Fabes E, Mortola S, Salsa S: Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana University Mathematics Journal 1981,30(4):621-640. 10.1512/iumj.1981.30.30049MATHMathSciNetView ArticleGoogle Scholar
  4. Fabes E, Garofalo N, Marín-Malave S, Salsa S: Fatou theorems for some nonlinear elliptic equations. Revista Matemática Iberoamericana 1988,4(2):227-251.MATHView ArticleGoogle Scholar
  5. Manfredi JJ, Weitsman A:On the Fatou theorem for -harmonic functions. Communications in Partial Differential Equations 1988,13(6):651-668. 10.1080/03605308808820556MATHMathSciNetView ArticleGoogle Scholar
  6. Aronsson G:Construction of singular solutions to the -harmonic equation and its limit equation for . Manuscripta Mathematica 1986,56(2):135-158. 10.1007/BF01172152MathSciNetView ArticleGoogle Scholar
  7. Bhattacharya T: A note on non-negative singular infinity-harmonic functions in the half-space. Revista Matemática Complutense 2005,18(2):377-385.MATHView ArticleGoogle Scholar
  8. Aronsson G, Crandall MG, Juutinen P: A tour of the theory of absolutely minimizing functions. Bulletin of the American Mathematical Society. New Series 2004,41(4):439-505. 10.1090/S0273-0979-04-01035-3MATHMathSciNetView ArticleGoogle Scholar
  9. Crandall MG, Evans LC, Gariepy RF: Optimal Lipschitz extensions and the infinity Laplacian. Calculus of Variations and Partial Differential Equations 2001,13(2):123-139.MATHMathSciNetGoogle Scholar
  10. Bhattacharya T, DiBenedetto E, Manfredi JJ:Limits as of and related extremal problems. Some topics in nonlinear PDEs (Turin, 1989). Rendiconti del Seminario Matematico. Università e Politecnico di Torino 1989, 15-68 (1991). special issueGoogle Scholar
  11. Bhattacharya T:On the behaviour of -harmonic functions near isolated points. Nonlinear Analysis. Theory, Methods & Applications 2004,58(3-4):333-349. 10.1016/ ArticleGoogle Scholar
  12. Bhattacharya T:On the behaviour of -harmonic functions on some special unbounded domains. Pacific Journal of Mathematics 2005,219(2):237-253. 10.2140/pjm.2005.219.237MATHMathSciNetView ArticleGoogle Scholar
  13. Lindqvist P, Manfredi JJ:The Harnack inequality for -harmonic functions. Electronic Journal of Differential Equations 1995,1995(4):1-5.MathSciNetGoogle Scholar
  14. Savin O: regularity for infinity harmonic functions in two dimensions. Archive for Rational Mechanics and Analysis 2005,176(3):351-361. 10.1007/s00205-005-0355-8MATHMathSciNetView ArticleGoogle Scholar
  15. Barles G, Busca J: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Communications in Partial Differential Equations 2001,26(11-12):2323-2337. 10.1081/PDE-100107824MATHMathSciNetView ArticleGoogle Scholar