Skip to content

Advertisement

  • Research Article
  • Open Access

Existence of Symmetric Positive Solutions for an -Point Boundary Value Problem

Boundary Value Problems20072007:079090

https://doi.org/10.1155/2007/79090

  • Received: 23 June 2006
  • Accepted: 11 March 2007
  • Published:

Abstract

We study the second-order -point boundary value problem , , , where , for with . is continuous, symmetric on the interval , and maybe singular at and , is continuous, and is symmetric on the interval for all and satisfies some appropriate growth conditions. By using Krasnoselskii's fixed point theorem in a cone, we get some existence results of symmetric positive solutions.

Keywords

  • Differential Equation
  • Growth Condition
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation

[123456789101112131415161718192021222324252627282930]

Authors’ Affiliations

(1)
Department of Electron and Information, Zhejiang University of Media and Communications, Hangzhou, Zhejiang, 310018, China

References

  1. Chen S, Hu J, Chen L, Wang C:Existence results for -point boundary value problem of second order ordinary differential equations. Journal of Computational and Applied Mathematics 2005,180(2):425-432. 10.1016/j.cam.2004.11.010MATHMathSciNetView ArticleGoogle Scholar
  2. Cheung W-S, Ren J:Positive solution for -point boundary value problems. Journal of Mathematical Analysis and Applications 2005,303(2):565-575. 10.1016/j.jmaa.2004.08.056MATHMathSciNetView ArticleGoogle Scholar
  3. Cheung W-S, Ren J: Twin positive solutions for quasi-linear multi-point boundary value problems. Nonlinear Analysis 2005,62(1):167-177. 10.1016/j.na.2005.03.018MATHMathSciNetView ArticleGoogle Scholar
  4. Dong S, Ge W:Positive solutions of an -point boundary value problem with sign changing nonlinearities. Computers & Mathematics with Applications 2005,49(4):589-598. 10.1016/j.camwa.2004.07.018MATHMathSciNetView ArticleGoogle Scholar
  5. Guo Y, Shan W, Ge W:Positive solutions for second-order -point boundary value problems. Journal of Computational and Applied Mathematics 2003,151(2):415-424. 10.1016/S0377-0427(02)00739-2MATHMathSciNetView ArticleGoogle Scholar
  6. Infante G, Webb JRL: Nonzero solutions of Hammerstein integral equations with discontinuous kernels. Journal of Mathematical Analysis and Applications 2002,272(1):30-42. 10.1016/S0022-247X(02)00125-7MATHMathSciNetView ArticleGoogle Scholar
  7. Kong L, Kong Q: Second-order boundary value problems with nonhomogeneous boundary conditions—I. Mathematische Nachrichten 2005,278(1-2):173-193. 10.1002/mana.200410234MATHMathSciNetView ArticleGoogle Scholar
  8. Kosmatov N:Semipositone -point boundary-value problems. Electronic Journal of Differential Equations 2004,2004(119):1-7.View ArticleGoogle Scholar
  9. Liu B: Solvability of multi-point boundary value problem at resonance.—part IV. Applied Mathematics and Computation 2003,143(2-3):275-299. 10.1016/S0096-3003(02)00361-2MATHMathSciNetView ArticleGoogle Scholar
  10. Liu B: Positive solutions of a nonlinear four-point boundary value problems. Applied Mathematics and Computation 2004,155(1):179-203. 10.1016/S0096-3003(03)00770-7MATHMathSciNetView ArticleGoogle Scholar
  11. Liu X:Nontrivial solutions of singular nonlinear -point boundary value problems. Journal of Mathematical Analysis and Applications 2003,284(2):576-590. 10.1016/S0022-247X(03)00365-2MATHMathSciNetView ArticleGoogle Scholar
  12. Ma R:Existence results of a -point boundary value problem at resonance. Journal of Mathematical Analysis and Applications 2004,294(1):147-157. 10.1016/j.jmaa.2004.02.005MATHMathSciNetView ArticleGoogle Scholar
  13. Ma R:Multiple positive solutions for nonlinear -point boundary value problems. Applied Mathematics and Computation 2004,148(1):249-262. 10.1016/S0096-3003(02)00843-3MATHMathSciNetView ArticleGoogle Scholar
  14. Ma R, O'Regan D:Solvability of singular second order -point boundary value problems. Journal of Mathematical Analysis and Applications 2005,301(1):124-134. 10.1016/j.jmaa.2004.07.009MATHMathSciNetView ArticleGoogle Scholar
  15. Sun Y:Positive solutions of nonlinear second-order -point boundary value problem. Nonlinear Analysis 2005,61(7):1283-1294. 10.1016/j.na.2005.01.105MATHMathSciNetView ArticleGoogle Scholar
  16. Sun Y: Nontrivial solution for a three-point boundary-value problem. Electronic Journal of Differential Equations 2004,2004(111):1-10.MATHGoogle Scholar
  17. Sun Y, Liu L: Solvability for a nonlinear second-order three-point boundary value problem. Journal of Mathematical Analysis and Applications 2004,296(1):265-275. 10.1016/j.jmaa.2004.04.013MATHMathSciNetView ArticleGoogle Scholar
  18. Xu X:Multiple sign-changing solutions for some -point boundary-value problems. Electronic Journal of Differential Equations 2004,2004(89):1-14.Google Scholar
  19. Xu X:Positive solutions for singular -point boundary value problems with positive parameter. Journal of Mathematical Analysis and Applications 2004,291(1):352-367. 10.1016/j.jmaa.2003.11.009MATHMathSciNetView ArticleGoogle Scholar
  20. Zhang G, Sun J:Positive solutions of -point boundary value problems. Journal of Mathematical Analysis and Applications 2004,291(2):406-418. 10.1016/j.jmaa.2003.11.034MATHMathSciNetView ArticleGoogle Scholar
  21. Zhang Z, Wang J: On existence and multiplicity of positive solutions to singular multi-point boundary value problems. Journal of Mathematical Analysis and Applications 2004,295(2):502-512. 10.1016/j.jmaa.2004.03.057MATHMathSciNetView ArticleGoogle Scholar
  22. Avery RI, Henderson J: Three symmetric positive solutions for a second-order boundary value problem. Applied Mathematics Letters 2000,13(3):1-7. 10.1016/S0893-9659(99)00177-9MATHMathSciNetView ArticleGoogle Scholar
  23. Henderson J, Thompson HB: Multiple symmetric positive solutions for a second order boundary value problem. Proceedings of the American Mathematical Society 2000,128(8):2373-2379. 10.1090/S0002-9939-00-05644-6MATHMathSciNetView ArticleGoogle Scholar
  24. Li F, Zhang Y: Multiple symmetric nonnegative solutions of second-order ordinary differential equations. Applied Mathematics Letters 2004,17(3):261-267. 10.1016/S0893-9659(04)90061-4MathSciNetView ArticleGoogle Scholar
  25. Yao Q:Existence and iteration of symmetric positive solutions for a singular two-point boundary value problem. Computers & Mathematics with Applications 2004,47(8-9):1195-1200. 10.1016/S0898-1221(04)90113-7MATHMathSciNetView ArticleGoogle Scholar
  26. Kosmatov N: Symmetric solutions of a multi-point boundary value problem. Journal of Mathematical Analysis and Applications 2005,309(1):25-36. 10.1016/j.jmaa.2004.11.008MATHMathSciNetView ArticleGoogle Scholar
  27. Kosmatov N: A symmetric solution of a multipoint boundary value problem at resonance. Abstract and Applied Analysis 2006, 2006: 11 pages.MathSciNetView ArticleGoogle Scholar
  28. Deimling K: Nonlinear Functional Analysis. Springer, Berlin, Germany; 1985:xiv+450.MATHView ArticleGoogle Scholar
  29. Krasnosel'skiĭ MA: Positive Solutions of Operator Equations. P. Noordhoff, Groningen, The Netherlands; 1964:381.Google Scholar
  30. Guo D, Lakshmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, Orlando; 1988.MATHGoogle Scholar

Copyright

Advertisement