Skip to main content

Advertisement

Existence and Nonexistence Results for a Class of Quasilinear Elliptic Systems

Article metrics

  • 611 Accesses

Abstract

Using variational methods, we prove the existence and nonexistence of positive solutions for a class of-Laplacian systems with a parameter.

[1234567]

References

  1. 1.

    Perera K: Multiple positive solutions for a class of quasilinear elliptic boundary-value problems. Electronic Journal of Differential Equations 2003, (7):5.

  2. 2.

    Maya C, Shivaji R: Multiple positive solutions for a class of semilinear elliptic boundary value problems. Nonlinear Analysis 1999,38(4):497-504. 10.1016/S0362-546X(98)00211-9

  3. 3.

    de Thélin F: Première valeur propre d'un système elliptique non linéaire. Comptes Rendus de l'Académie des Sciences 1990,311(10):603-606.

  4. 4.

    Anane A:Simplicité et isolation de la première valeur propre du-laplacien avec poids. Comptes Rendus des Séances de l'Académie des Sciences 1987,305(16):725-728.

  5. 5.

    DiBenedetto E: local regularity of weak solutions of degenerate elliptic equations. Nonlinear Analysis 1983,7(8):827-850. 10.1016/0362-546X(83)90061-5

  6. 6.

    Trudinger NS: On Harnack type inequalities and their application to quasilinear elliptic equations. Communications on Pure and Applied Mathematics 1967,20(4):721-747. 10.1002/cpa.3160200406

  7. 7.

    Rabinowitz PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics. Volume 65. American Mathematical Society, Washington, DC, USA; 1986:viii+100.

Download references

Author information

Correspondence to Said El Manouni.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Variational Method