Skip to main content


Generalizations of the Lax-Milgram Theorem

Article metrics

  • 1508 Accesses

  • 3 Citations


We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In particular, we give sufficient conditions for a real-valued function defined on the product of a reflexive Banach space and a normed space to represent all bounded linear functionals of the latter. We also give two applications to singular differential equations.



  1. 1.

    An LH, Du PX, Duc DM, Tuoc PV: Lagrange multipliers for functions derivable along directions in a linear subspace. Proceedings of the American Mathematical Society 2005,133(2):595-604. 10.1090/S0002-9939-04-07711-1

  2. 2.

    Hayden TL: The extension of bilinear functionals. Pacific Journal of Mathematics 1967, 22: 99-108.

  3. 3.

    Hayden TL: Representation theorems in reflexive Banach spaces. Mathematische Zeitschrift 1968,104(5):405-406. 10.1007/BF01110432

  4. 4.

    Megginson RE: An Introduction to Banach Space Theory, Graduate Texts in Mathematics. Volume 183. Springer, New York, NY, USA; 1998:xx+596.

  5. 5.

    Banach S: Théorie des Opérations Linéaires. Monografje Matematyczne, Warsaw, Poland; 1932.

  6. 6.

    Dieudonné J: La dualité dans les espaces vectoriels topologiques. Annales Scientifiques de l'École Normale Supérieure. Troisième Série 1942, 59: 107-139.

  7. 7.

    Brezis H: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Annales de l'Institut Fourier. Université de Grenoble 1968,18(1):115-175. 10.5802/aif.280

  8. 8.

    Zeidler E: Nonlinear Functional Analysis and Its Applications. II/B. Springer, New York, NY, USA; 1990:xviii+467.

Download references

Author information

Correspondence to Dimosthenis Drivaliaris.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article


  • Differential Equation
  • Banach Space
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation