- Research Article
- Open access
- Published:
Generalizations of the Lax-Milgram Theorem
Boundary Value Problems volume 2007, Article number: 087104 (2007)
Abstract
We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In particular, we give sufficient conditions for a real-valued function defined on the product of a reflexive Banach space and a normed space to represent all bounded linear functionals of the latter. We also give two applications to singular differential equations.
References
An LH, Du PX, Duc DM, Tuoc PV: Lagrange multipliers for functions derivable along directions in a linear subspace. Proceedings of the American Mathematical Society 2005,133(2):595-604. 10.1090/S0002-9939-04-07711-1
Hayden TL: The extension of bilinear functionals. Pacific Journal of Mathematics 1967, 22: 99-108.
Hayden TL: Representation theorems in reflexive Banach spaces. Mathematische Zeitschrift 1968,104(5):405-406. 10.1007/BF01110432
Megginson RE: An Introduction to Banach Space Theory, Graduate Texts in Mathematics. Volume 183. Springer, New York, NY, USA; 1998:xx+596.
Banach S: Théorie des Opérations Linéaires. Monografje Matematyczne, Warsaw, Poland; 1932.
Dieudonné J: La dualité dans les espaces vectoriels topologiques. Annales Scientifiques de l'École Normale Supérieure. Troisième Série 1942, 59: 107-139.
Brezis H: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Annales de l'Institut Fourier. Université de Grenoble 1968,18(1):115-175. 10.5802/aif.280
Zeidler E: Nonlinear Functional Analysis and Its Applications. II/B. Springer, New York, NY, USA; 1990:xviii+467.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Drivaliaris, D., Yannakakis, N. Generalizations of the Lax-Milgram Theorem. Bound Value Probl 2007, 087104 (2007). https://doi.org/10.1155/2007/87104
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/87104