Skip to main content

Advertisement

Generalizations of the Lax-Milgram Theorem

Article metrics

  • 1508 Accesses

  • 3 Citations

Abstract

We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In particular, we give sufficient conditions for a real-valued function defined on the product of a reflexive Banach space and a normed space to represent all bounded linear functionals of the latter. We also give two applications to singular differential equations.

[12345678]

References

  1. 1.

    An LH, Du PX, Duc DM, Tuoc PV: Lagrange multipliers for functions derivable along directions in a linear subspace. Proceedings of the American Mathematical Society 2005,133(2):595-604. 10.1090/S0002-9939-04-07711-1

  2. 2.

    Hayden TL: The extension of bilinear functionals. Pacific Journal of Mathematics 1967, 22: 99-108.

  3. 3.

    Hayden TL: Representation theorems in reflexive Banach spaces. Mathematische Zeitschrift 1968,104(5):405-406. 10.1007/BF01110432

  4. 4.

    Megginson RE: An Introduction to Banach Space Theory, Graduate Texts in Mathematics. Volume 183. Springer, New York, NY, USA; 1998:xx+596.

  5. 5.

    Banach S: Théorie des Opérations Linéaires. Monografje Matematyczne, Warsaw, Poland; 1932.

  6. 6.

    Dieudonné J: La dualité dans les espaces vectoriels topologiques. Annales Scientifiques de l'École Normale Supérieure. Troisième Série 1942, 59: 107-139.

  7. 7.

    Brezis H: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Annales de l'Institut Fourier. Université de Grenoble 1968,18(1):115-175. 10.5802/aif.280

  8. 8.

    Zeidler E: Nonlinear Functional Analysis and Its Applications. II/B. Springer, New York, NY, USA; 1990:xviii+467.

Download references

Author information

Correspondence to Dimosthenis Drivaliaris.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Banach Space
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation