- Research Article
- Open access
- Published:

# Antiperiodic Boundary Value Problems for Second-Order Impulsive Ordinary Differential Equations

*Boundary Value Problems*
**volumeÂ 2008**, ArticleÂ number:Â 585378 (2009)

## Abstract

We consider a second-order ordinary differential equation with antiperiodic boundary conditions and impulses. By using Schaefer's fixed-point theorem, some existence results are obtained.

## 1. Introduction

Impulsive differential equations, which arise in biology, physics, population dynamics, economics, and so forth, are a basic tool to study evolution processes that are subjected to abrupt in their states (see [1â€“4]). Many literatures have been published about existence of solutions for first-order and second-order impulsive ordinary differential equations with boundary conditions [5â€“19], which are important for complementing the theory of impulsive equations. In recent years, the solvability of the antiperiodic boundary value problems of first-order and second-order differential equations were studied by many authors, for example, we refer to [20â€“32] and the references therein. It should be noted that antiperiodic boundary value problems appear in physics in a variety of situations [33, 34]. Recently, the existence results were extended to antiperiodic boundary value problems for first-order impulsive differential equations [35, 36]. Very recently, Wang and Shen [37] investigated the antiperiodic boundary value problem for a class of second-order differential equations by using Schauder's fixed point theorem and the lower and upper solutions method.

Inspired by [35â€“37], in this paper, we investigate the antiperiodic boundary value problem for second-order impulsive nonlinear differential equations of the form

where , , is continuous on , , exist, ; , ; .

To the best of the authors knowledge, no one has studied the existence of solutions for impulsive antiperiodic boundary value problem (1). The following Schaefer's fixed-point theorem is fundamental in the proof of our main results.

Lemma 1.1 (see [38] (Schaefer)).

Let be a normed linear space with a compact operator. If the set

is bounded, then has at least one fixed point.

The paper is formulated as follows. In Section 2, some definitions and lemmas are given. In Section 3, we obtain two new existence theorems by using Schaefer's fixed point theorem. In Section 4, an illustrative example is given to demonstrate the effectiveness of the obtained results.

## 2. Preliminaries

In order to define the concept of solution for (1), we introduce the following spaces of functions:

is continuous for any , , exist, and ,

is continuously differentiable for any , , exist, and .

and are Banach space with the norms

A solution to the impulsive BVP (1) is a function that satisfies (1) for each .

Consider the following impulsive BVP with

where .

For convenience, we set .

Lemma 2.1.

is a solution of (2.2) if and only if is a solution of the impulsive integral equation

where

Proof.

If is a solution of (2.2), setting

then, by the first equation of (2.2) we have

Multiplying (2.6) by and integrating on and (), respectively, we get

So

In the same way, we can obtain that

where . Integrating (2.5), we have

By (2.9), we get

Substituting (2.11) into (2.10), we obtain

In view of and , we have

Substituting (2.14) into (2.12), by routine calculation, we can get (2.3).

Conversely, if is a solution of (2.3), then direct differentiation of (2.3) gives , . Moreover, we obtain , , and . Hence, is a solution of (2.2).

Remark 2.2.

We call above the Green function for the following homogeneous BVP:

Define a mapping by

In view of Lemma 2.1, we easily see that is a fixed point of operator if and only if is a solution to the impulsive boundary value problem (1).

It is easy to check that

Lemma 2.3.

If and , then

Proof.

Since , we have

Set , we obtain from that

Substituting (2.20) into (2.19), we get

The proof is complete.

## 3. Main results

In this section, we study the existence of solutions for BVP (1). For this purpose we assume that there exist constants , functions , and nonnegative constants () such that

(H_{1}), and

(H_{2}), ,

hold.

Remark 3.1.

means that the nonlinearity growths at most linearly in , implies that the impulses are (at most) linear.

For convenience, let

Theorem 3.2.

Suppose that conditions and are satisfied. Further assume that

holds, where and as in (3.1). Then, BVP (1) has at least one solution.

Proof.

It is easy to check by Arzela-Ascoli theorem that the operator is completely continuous. Assume that is a solution of the equation

Then,

Integrating (3.4) from 0 to , we get that

In view of , we obtain by (3.6) that

Integrating (3.4) from 0 to , we obtain that

From (3.7) and (3.8), we have

that is,

Thus,

where are as in (3.1). Integrating (3.5) from 0 to , we get that

In view of and , we have

Substituting (3.13) into (3.12), we obtain by and (3.11) that

Thus,

where

By Lemma 2.3 and (3.15), we have

It follows from the above inequality and (3.2) that there exists such that . Hence, we get by (3.11) that

Thus, . It follows from Lemma 1.1 that BVP (1) has at least one solution. The proof is complete.

Theorem 3.3.

Assume that holds. Suppose that there exist a continuous and nondecreasing function and a nonnegative function with

Moreover suppose that

holds, where

Then, BVP (1) has at least one solution.

Proof.

From (3.20), there exist and such that

Thus, there exists such that

Assume that is a solution of the equation

Then, we have by (3.19), (2.17), and (3.23) that

Thus, we have

that is,

which implies that there exists such that . By (3.7), (3.8), and (3.23), we get

which implies that

Hence, . It follows from Lemma 1.1 that BVP (1) has at least one solution. The proof is complete.

## 4. Example

In this section, we give an example to illustrate the effectiveness of our results.

Example 4.1.

Consider the problem

Let , , , , . It is easy to show that

where , , . And

Thus, and hold. Obviously, , , , , and . Let , we have

Therefore,

which implies that (3.2) holds. So, all the conditions of Theorem 3.2 are satisfied. By Theorem 3.2, antiperiod boundary value problem (4.1) has at least one solution.

## References

Lakshmikantham V, Bainov DD, Simeonov PS:

*Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics*.*Volume 6*. World Scientific, Singapore; 1989:xii+273.Samoilenko AM, Perestyuk NA:

*Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises*.*Volume 14*. World Scientific, Singapore; 1995:x+462.Zavalishchin ST, Sesekin AN:

*Dynamic Impulse Systems: Theory and Application, Mathematics and Its Applications*.*Volume 394*. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1997:xii+256.Liu X (Ed):

**Advances in impulsive differential equations**In*Dynamics of Continuous, Discrete & Impulsive Systems. Series A*2002,**9**(3):313-462.Bai C, Yang D:

**Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions.***Boundary Value Problems*2007,**2007:**-13.Li J, Shen J:

**Periodic boundary value problems for second order differential equations with impulses.***Nonlinear Studies*2005,**12**(4):391-400.Nieto JJ:

**Periodic boundary value problems for first-order impulsive ordinary differential equations.***Nonlinear Analysis: Theory, Methods & Applications*2002,**51**(7):1223-1232. 10.1016/S0362-546X(01)00889-6Chen J, Tisdell CC, Yuan R:

**On the solvability of periodic boundary value problems with impulse.***Journal of Mathematical Analysis and Applications*2007,**331**(2):902-912. 10.1016/j.jmaa.2006.09.021Benchohra M, Henderson J, Ntouyas S:

*Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications*.*Volume 2*. Hindawi, New York, NY, USA; 2006:xiv+366.Jankowski T, Nieto JJ:

**Boundary value problems for first-order impulsive ordinary differential equations with delay arguments.***Indian Journal of Pure and Applied Mathematics*2007,**38**(3):203-211.Zeng G, Wang F, Nieto JJ:

**Complexity of a delayed predator-prey model with impulsive harvest and Holling type II functional response.***Advances in Complex Systems*2008,**11**(1):77-97. 10.1142/S0219525908001519Akhmetov MU, Zafer A, Sejilova RD:

**The control of boundary value problems for quasilinear impulsive integro-differential equations.***Nonlinear Analysis: Theory, Methods & Applications*2002,**48**(2):271-286. 10.1016/S0362-546X(00)00186-3Nieto JJ, O'Regan D:

**Variational approach to impulsive differential equations.***Nonlinear Analysis: Real World Applications*2009,**10**(2):680-690. 10.1016/j.nonrwa.2007.10.022Zhang H, Chen L, Nieto JJ:

**A delayed epidemic model with stage-structure and pulses for pest management strategy.***Nonlinear Analysis: Real World Applications*2008,**9**(4):1714-1726. 10.1016/j.nonrwa.2007.05.004Qian D, Li X:

**Periodic solutions for ordinary differential equations with sublinear impulsive effects.***Journal of Mathematical Analysis and Applications*2005,**303**(1):288-303. 10.1016/j.jmaa.2004.08.034Yan J, Zhao A, Nieto JJ:

**Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems.***Mathematical and Computer Modelling*2004,**40**(5-6):509-518. 10.1016/j.mcm.2003.12.011Mohamad S, Gopalsamy K, AkÃ§a H:

**Exponential stability of artificial neural networks with distributed delays and large impulses.***Nonlinear Analysis: Real World Applications*2008,**9**(3):872-888. 10.1016/j.nonrwa.2007.01.011Nieto JJ, RodrÃguez-LÃ³pez R:

**Boundary value problems for a class of impulsive functional equations.***Computers & Mathematics with Applications*2008,**55**(12):2715-2731. 10.1016/j.camwa.2007.10.019Li J, Nieto JJ, Shen J:

**Impulsive periodic boundary value problems of first-order differential equations.***Journal of Mathematical Analysis and Applications*2007,**325**(1):226-236. 10.1016/j.jmaa.2005.04.005Aftabizadeh AR, Aizicovici S, Pavel NH:

**On a class of second-order anti-periodic boundary value problems.***Journal of Mathematical Analysis and Applications*1992,**171**(2):301-320. 10.1016/0022-247X(92)90345-EFranco D, Nieto JJ, O'Regan D:

**Anti-periodic boundary value problem for nonlinear first order ordinary differential equations.***Mathematical Inequalities & Applications*2003,**6**(3):477-485.Jankowski T:

**Ordinary differential equations with nonlinear boundary conditions of antiperiodic type.***Computers & Mathematics with Applications*2004,**47**(8-9):1419-1428. 10.1016/S0898-1221(04)90134-4Yin Y:

**Remarks on first order differential equations with anti-periodic boundary conditions.***Nonlinear Times and Digest*1995,**2**(1):83-94.Yin Y:

**Monotone iterative technique and quasilinearization for some anti-periodic problems.***Nonlinear World*1996,**3**(2):253-266.Ding W, Xing Y, Han M:

**Anti-periodic boundary value problems for first order impulsive functional differential equations.***Applied Mathematics and Computation*2007,**186**(1):45-53. 10.1016/j.amc.2006.07.087Ahmad B, Nieto JJ:

**Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions.***Nonlinear Analysis: Theory, Methods & Applications*2008,**69**(10):3291-3298. 10.1016/j.na.2007.09.018Franco D, Nieto JJ, O'Regan D:

**Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions.***Applied Mathematics and Computation*2004,**153**(3):793-802. 10.1016/S0096-3003(03)00678-7Chen Y, Nieto JJ, O'Regan D:

**Anti-periodic solutions for fully nonlinear first-order differential equations.***Mathematical and Computer Modelling*2007,**46**(9-10):1183-1190. 10.1016/j.mcm.2006.12.006Ou C:

**Anti-periodic solutions for high-order Hopfield neural networks.***Computers & Mathematics with Applications*2008,**56**(7):1838-1844. 10.1016/j.camwa.2008.04.029Wu R:

**An anti-periodic LaSalle oscillation theorem.***Applied Mathematics Letters*2008,**21**(9):928-933. 10.1016/j.aml.2007.10.004Li Y, Huang L:

**Anti-periodic solutions for a class of LiÃ©nard-type systems with continuously distributed delays.***Nonlinear Analysis: Real World Applications*. In pressWang K:

**A new existence result for nonlinear first-order anti-periodic boundary value problems.***Applied Mathematics Letters*2008,**21**(11):1149-1154. 10.1016/j.aml.2007.12.013Ahn C, Rim C:

**Boundary flows in general coset theories.***Journal of Physics A*1999,**32**(13):2509-2525. 10.1088/0305-4470/32/13/004Abdurrahman A, Anton F, Bordes J:

**Half-string oscillator approach to string field theory (ghost sector. I).***Nuclear Physics B*1993,**397**(1-2):260-282. 10.1016/0550-3213(93)90344-OFranco D, Nieto JJ:

**First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions.***Nonlinear Analysis: Theory, Methods & Applications*2000,**42**(2):163-173. 10.1016/S0362-546X(98)00337-XLuo Z, Shen J, Nieto JJ:

**Antiperiodic boundary value problem for first-order impulsive ordinary differential equations.***Computers & Mathematics with Applications*2005,**49**(2-3):253-261. 10.1016/j.camwa.2004.08.010Wang W, Shen J:

**Existence of solutions for anti-periodic boundary value problems.***Nonlinear Analysis: Theory, Methods & Applications*2009,**70**(2):598-605. 10.1016/j.na.2007.12.031Lloyd NG:

*Degree Theory*. Cambridge University Press, Cambridge, UK; 1978:vi+172. Cambridge Tracts in Mathematics, no. 7

## Acknowledgments

The author would like to thank the referees for their valuable suggestions and comments. This project is supported by the National Natural Science Foundation of China (10771212) and the Natural Science Foundation of Jiangsu Education Office (06KJB110010).

## Author information

### Authors and Affiliations

### Corresponding author

## Rights and permissions

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## About this article

### Cite this article

Bai, C. Antiperiodic Boundary Value Problems for Second-Order Impulsive Ordinary Differential Equations.
*Bound Value Probl* **2008**, 585378 (2009). https://doi.org/10.1155/2008/585378

Received:

Accepted:

Published:

DOI: https://doi.org/10.1155/2008/585378