 Research Article
 Open access
 Published:
On the Solvability of SecondOrder Impulsive Differential Equations with Antiperiodic Boundary Value Conditions
Boundary Value Problems volumeÂ 2008, ArticleÂ number:Â 864297 (2008)
Abstract
We prove existence results for secondorder impulsive differential equations with antiperiodic boundary value conditions in the presence of classical fixed point theorems. We also obtain the expression of Green's function of related linear operator in the space of piecewise continuous functions.
1. Introduction and Preliminaries
Many evolution processes are characterized by the fact that at certain moments of time they experience a change of state abruptly. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. It is known that many biological phenomena involving threshold, bursting rhythm models in medicine and biology, optimal control models in economics, pharmacokinetics, and frequency modulated systems do exhibit impulse effects. The branch of modern, applied analysis known as "impulsive" differential equations provides a natural framework to mathematically describe the aforementioned jumping processes. The reader is referred to monographs [1â€“4] and references therein for some nice examples and applications to the above areas.
In this paper, we mainly study the following secondorder impulsive differential equations with antiperiodic boundary value conditions:
where and is continuous on , are continuous functions.
In [4â€“12], the authors studied the existence of antiperiodic solutions for firstorder, secondorder, or highorder differential equations without impulses, and in [3, 13â€“16] the authors were concerned with the antiperiodic solutions of firstorder impulsive differential equations. Also we should mention the work by Cabada et al. in [17] which is concerned with a certain th order linear differential equation with constant impulses at fixed times and nonhomogeneous periodic boundary conditions. So far, to the best of our knowledge, this is the first work to deal with the antiperiodic solutions to secondorder differential equations with nonconstant impulses. Our method to prove the existence of antiperiodic solutions is based on the works in [13, 18, 19]. We should point out that it is Christopher C. Tisdell who started with this method.
The article is organized as follows. In Section 2, we present the expression of Green's functions of related linear operator in the space of piecewise continuous functions. Section 3 contains the main results of the paper and is devoted to the existence of solutions to (1.1). There, differential inequalities are developed and applied to prove the existence of at least one solution to (1.1). In Section 4, a couple of examples are given to illustrate how the main results work.
To understand the notation used above and the ideas in the remainder of the paper, we now briefly introduce some appropriate concepts connected with impulsive differential equations. Most of the following notation can be found in [1, 2, 4, 5]. We assume that , exist and . We introduce and denote the Banach space by
with the norm where is the usual Euclidean norm and will be the Euclidean inner product.
In a similar fashion to the above, define and denote the Banach space by
with the norm
The following fixed point theorem is our main tool to prove the existence of at least one solution to (1.1).
Schaefer's Fixed Point Theorem (19)
Let be a Banach space and let be a completely continuous operator. Then, either

(i)
the operator equation has a solution for , or

(ii)
the set is unbounded.
2. Expression of Green's Function
In this part, we present the expression of Green's functions for second order impulsive equations with antiperiodic conditions.
Lemma 2.1.
Assume and are two constants. Let , . Then for any , solves
if and only if is the solution of integral equation
where
Proof.
Assume is a solution of (2.1) and let for . We have
Then for ,
This implies . Consequently, from the impulsive condition in (2.1) we get that
where . Now we integrate (2.3) from to and use (2.5) to obtain
It follows that
Similarly, we have for that
To sum up, we have for that
Since , we can deduce in a similar way as to deal with to obtain
Now we are in position to show the expression of for To do that, we need to compute in (2.10). In what follows we present the expression of for step by step and then obtain the general form of for .
First of all, for , we have
See that
Consequently,
Integrate by parts to get
Thus,
Similarly, we have for that
Now we consider for . Clearly,
Noting that , we have
where is denoted by Similarly, for there holds
Thus, for ,
By the boundary condition of (2.1), we have
Substituting (2.21) into (2.20), and also noting that for
we see that is the solution of (2.2).
Now assume is a solution of (2.2). Then for
It is easy to verify
For we compute straightforwardly to get
which implies
Now, we prove is a solution of (2.1). Then the proof is completed.
For later use, we present the following estimations:
Corollary 2.2.
Assume in (2.1) that and . Then for any , is the solution of
if and only if is the solution of integral equation
where
Obviously, there hold
We now give Green's function of (2.1) for .
Lemma 2.3.
For any , is the solution of
if and only if satisfies the integral equation
where
Since the proof is very similar to that of Lemma 2.1, we omit it here. We can check easily that satisfies (2.34) and hence is a solution of (2.33). Also we get by straightforward computation that
Recall that a mapping between Banach spaces is compact if it is continuous and carries bounded sets into relatively compact sets.
Lemma 2.4.
Suppose that and are continuous. Define an operator as
where and are as given in Lemma 2.1. Then is a compact map.
Proof.
Noting the continuity of and , this follows in a standard stepbystep process and so it is omitted.
3. Main Results
In this section, we prove the existence results for (1.1) in presence of Schaefer's fixedpoint theorem.
Theorem 3.1.
Suppose that and are continuous. If for some and , there exist nonnegative constants , and such that
where is the Euclidean inner product, . Then (1.1) has at least one solution.
Proof.
Define an integral operator as
where and follow the forms of (G) and (H) in Lemma 2.1. By Lemma 2.4, is a compact mapping. Also, it follows from Lemma 2.1 that is a fixed point of if and only if satisfies
which is equivalent to (1.1). Consequently, all that we need to do is to verify that has at least one fixed point. With this in mind, we assume is a solution of
That is,
It is equivalent to say that satisfies
Firstly, we see that for ,
Further more, by the antiperiodic boundary condition we have
As a result,
Now we show that any potential solution of (3.6) is bounded a priori. By (3.2) and (3.11), we obtain
Taking the supremum and rearranging, we get by (3.3) that
Differentiating both sides of (3.7) and noting (2.23), we obtain
where
Thus,
Now we have shown that any possible solution of (3.6) is bounded by which is independent of . By Scheafer's fixed theorem we know that has at least one fixed point. Therefore, the proof is completed.
Suppose both and in Theorem 3.1. We obtain the following theorem.
Theorem 3.2.
Assume that and are continuous. If for some there exist nonnegative constants , and such that
where is the Euclidean inner product, , then (1.1) has at least one solution.
Proof.
Consider the mapping
where
By Lemma 2.4, is a compact mapping. Consider the equation
To show that has at least one fixed point, we apply Schaefer's theorem by showing that all potential solutions to
are bounded a priori, with the bound being independent of . With this in mind, let be a solution of (3.23). Note that is also a solution to
On one hand, we see that for
On the other hand, by the antiperiodic boundary condition we have
It therefore follows that
Consequently,
where .
We compute directly to get
Differentiating both sides of (3.19), we obtain
where
Thus,
Then the proof is completed.
Similarly, we can prove the following existence result for in Theorem 3.2.
Theorem 3.3.
Suppose that and are continuous. If there exist nonnegative constants and such that
where is the Euclidean inner product, , then (1.1) has at least one solution.
4. Examples
In this part, we show how our main theorems work by a couple of examples.
Example 4.1.
The scalar secondorder impulsive equations with antiperiodic boundary value condition
where have at least one solution.
Proof.
Let and in Theorem 3.1. For , we have and
On the other hand, for
Noting , we have for and that
Moreover, , . Then the conclusion follows from Theorem 3.1.
Example 4.2.
Consider antiperiodic value problem
We claim that (4.5) has at least one solution.
Proof.
Let and in Theorem 3.2. Choosing , we have for that
Since , we have Thus, for and ,
Moreover, , . Then the conclusion follows from Theorem 3.2.
References
Bainov D, Simeonov PS: Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics. Volume 66. Longman Scientific & Technical, Harlow, UK; 1993:x+228.
Benchohra M, Henderson J, Ntouyas S: Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications. Volume 2. Hindawi, New York, NY, USA; 2006:xiv+366.
Franco D, Nieto JJ: Firstorder impulsive ordinary differential equations with antiperiodic and nonlinear boundary conditions. Nonlinear Analysis: Theory, Methods & Applications 2000,42(2):163173. 10.1016/S0362546X(98)00337X
Park JY, Ha TG: Existence of antiperiodic solutions for hemivariational inequalities. Nonlinear Analysis: Theory, Methods & Applications 2008,68(4):747767. 10.1016/j.na.2006.11.032
Jankowski T: Ordinary differential equations with nonlinear boundary conditions of antiperiodic type. Computers & Mathematics with Applications 2004,47(89):14191428. 10.1016/S08981221(04)901344
Aftabizadeh AR, Aizicovici S, Pavel NH: Antiperiodic boundary value problems for higher order differential equations in Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications 1992,18(3):253267. 10.1016/0362546X(92)90063K
Aizicovici S, McKibben M, Reich S: Antiperiodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Analysis: Theory, Methods & Applications 2001,43(2):233251. 10.1016/S0362546X(99)001923
Aizicovici S, Pavel NH: Antiperiodic solutions to a class of nonlinear differential equations in Hilbert space. Journal of Functional Analysis 1991,99(2):387408. 10.1016/00221236(91)900468
Cabada A, Vivero DR: Existence and uniqueness of solutions of higherorder antiperiodic dynamic equations. Advances in Difference Equations 2004,2004(4):291310. 10.1155/S1687183904310022
Wang K: A new existence result for nonlinear firstorder antiperiodic boundary value problems. Applied Mathematics Letters 2008,21(11):11491154. 10.1016/j.aml.2007.12.013
Wang K, Li Y: A note on existence of (anti)periodic and heteroclinic solutions for a class of secondorder odes. Nonlinear Analysis: Theory, Methods & Applications. 2009,70(4):17111724. 10.1016/j.na.2008.02.054
Wang W, Shen J: Existence of solutions for antiperiodic boundary value problems. Nonlinear Analysis: Theory, Methods & Applications 2009,70(2):598605. 10.1016/j.na.2007.12.031
Nieto JJ, Tisdell CC: Existence and uniqueness of solutions to firstorder systems of nonlinear impulsive boundaryvalue problems with sub, superlinear or linear growth. Electronic Journal of Differential Equations 2007,2007(105):114.
Chen Y, Nieto JJ, O'Regan D: Antiperiodic solutions for fully nonlinear firstorder differential equations. Mathematical and Computer Modelling 2007,46(910):11831190. 10.1016/j.mcm.2006.12.006
Ding W, Xing Y, Han M: Antiperiodic boundary value problems for first order impulsive functional differential equations. Applied Mathematics and Computation 2007,186(1):4553. 10.1016/j.amc.2006.07.087
Luo Z, Shen J, Nieto JJ: Antiperiodic boundary value problem for firstorder impulsive ordinary differential equations. Computers & Mathematics with Applications 2005,49(23):253261. 10.1016/j.camwa.2004.08.010
Cabada A, Liz E, Lois S: Green's function and maximum principle for higher order ordinary differential equations with impulses. The Rocky Mountain Journal of Mathematics 2000,30(2):435446. 10.1216/rmjm/1022009274
Chen J, Tisdell CC, Yuan R: On the solvability of periodic boundary value problems with impulse. Journal of Mathematical Analysis and Applications 2007,331(2):902912. 10.1016/j.jmaa.2006.09.021
Rudd M, Tisdell CC: On the solvability of twopoint, secondorder boundary value problems. Applied Mathematics Letters 2007,20(7):824828. 10.1016/j.aml.2006.08.028
Acknowledgments
This research is supported by Ad Futura Scientific and Educational Foundation of the Republic of Slovenia, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia; the Nova Kreditna Banka Maribor; TELEKOM Slovenije; National Natural Science Foundation of China (10671127); National Natural Science Foundation of Shanghai (08ZR1416000); and Foundation of Science and Technology Commission of Shanghai Municipality (06XD14034).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Xing, Y., Romanovski, V. On the Solvability of SecondOrder Impulsive Differential Equations with Antiperiodic Boundary Value Conditions. Bound Value Probl 2008, 864297 (2008). https://doi.org/10.1155/2008/864297
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/864297