- Research Article
- Open Access

# A Remark on the Blowup of Solutions to the Laplace Equations with Nonlinear Dynamical Boundary Conditions

- Hongwei Zhang
^{1}Email author and - Qingying Hu
^{1}

**2010**:203248

https://doi.org/10.1155/2010/203248

© Hongwei Zhang and Qingying Hu. 2010

**Received:**24 April 2010**Accepted:**7 August 2010**Published:**11 August 2010

## Abstract

We present some sufficient conditions of blowup of the solutions to Laplace equations with semilinear dynamical boundary conditions of hyperbolic type.

## Keywords

- Weak Solution
- Laplace Equation
- Maximal Monotone
- Maximal Monotone Operator
- Hyperbolic Type

## 1. Introduction

where are constants, is the Laplace operator with respect to the space variables, and is the outer unit normal derivative to boundary . are given initial functions. For convenience, we take in this paper.

Hintermann [2] used the theory of semigroups in Banach spaces to give the existence and uniqueness of the solution for problem (1.5)–(1.7). Cavalcanti et al. [7–11] studied the existence and asymptotic behavior of solutions evolution problem on manifolds. In this direction, the existence and asymptotic behavior of the related of evolution problem on manifolds has been also considered by Andrade et al. [12, 13], Antunes et al. [14], Araruna et al. [15], and Hu et al. [16]. In addition, Doronin et al. [17] studied a class hyperbolic problem with second-order boundary conditions.

We will consider the blowup of the solution for problem (1.1)–(1.4) with nonlinear boundary source term . Blowup of the solution for problem (1.1)–(1.4) was considered by Kirane [3], when , by use of Jensen's inequality and Glassey's method [18]. Kirane et al. [19] concerned blowup of the solution for the Laplace equations with a hyperbolic type dynamical boundary inequality by the test function methods. In this paper, we present some sufficient conditions of blowup of the solutions for the problem (1.1)–(1.4) when is a bounded domain and can be a nonempty set. We use a different approach from those ones used in the prior literature [3, 19].

Amann and Fila [20], Kirane [3], and Koleva and Vulkov [21] Vulkov [22] considered blowup of the solution of problem (1.8)–(1.10). For more results concerning the related problem (1.8)–(1.10), we refer the reader to [3, 6, 19–31] and their references. In these papers, existence, boundedness, asymptotic behavior, and nonexistence of global solutions for problem (1.8)–(1.10) were studied.

In this paper, the definition of the usually space can be found in [32] and the norm of is denoted by .

## 2. Blowup of the Solutions

and the boundary conditions are satisfied in the trace sense [2].

Lemma 2.1 (see [33]).

Theorem 2.2.

Suppose that is a weak solution of problem (1.1)–(1.4) and satisfies:

where . Then, the solution of problem (1.1)–(1.4) blows up in a finite time.

Proof.

By virtue of the continuity of and the theorem of the intermediate values, there is a constant such that Hence, as It follows from Lemma 2.1 that Thus, as The theorem is proved.

Theorem 2.3.

where are defined as in Section 1. Then, the solution of problem (1.1)–(1.4) blows up in a finite time.

Proof.

and thus is monotonically increasing on This contradicts . Therefore, and hence as .

and as . The theorem is proved.

Remark 2.4.

## Declarations

### Acknowledgments

The authors are very grateful to the referee's suggestions and comments. The authors are supported by National Natural Science Foundation of China and Foundation of Henan University of Technology.

## Authors’ Affiliations

## References

- Garipov RM:
**On the linear theory of gravity waves: the theorem of existence and uniqueness.***Archive for Rational Mechanics and Analysis*1967 ,**24:**352-362.MathSciNetView ArticleMATHGoogle Scholar - Hintermann T:
**Evolution equations with dynamic boundary conditions.***Proceedings of the Royal Society of Edinburgh. Section A*1989,**113**(1-2):43-60. 10.1017/S0308210500023945MathSciNetView ArticleMATHGoogle Scholar - Kirane M:
**Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type.***Hokkaido Mathematical Journal*1992,**21**(2):221-229.MathSciNetView ArticleMATHGoogle Scholar - Lamb H:
*Hydrodynamics*. 4th edition. Cambridge University Press, Cambridge, Mass, USA; 1916.MATHGoogle Scholar - Langer RE:
**A problem in diffusion or in the flow of heat for a solid in contact with a fluid.***Tohoku Mathematical Journal*1932,**35:**260-275.MATHGoogle Scholar - Lions J-L:
*Quelques méthodes de résolution des problèmes aux limites non linéaires*. Dunod, Paris, France; 1969:xx+554.MATHGoogle Scholar - Cavalcanti MM, Cavalcanti VND:
**On solvability of solutions of degenerate nonlinear equations on manifolds.***Differential and Integral Equations*2000,**13**(10–12):1445-1458.MathSciNetMATHGoogle Scholar - Cavalcanti MM, Cavalcanti VND:
**Existence and asymptotic stability for evolution problems on manifolds with damping and source terms.***Journal of Mathematical Analysis and Applications*2004,**291**(1):109-127. 10.1016/j.jmaa.2003.10.020MathSciNetView ArticleMATHGoogle Scholar - Cavalcanti MM, Cavalcanti VND, Fukuoka R, Soriano JA:
**Asymptotic stability of the wave equation on compact surfaces and locally distributed damping—a sharp result.***Transactions of the American Mathematical Society*2009,**361**(9):4561-4580. 10.1090/S0002-9947-09-04763-1MathSciNetView ArticleMATHGoogle Scholar - Cavalcanti MM, Cavalcanti VND, Fukuoka R, Soriano JA:
**Uniform stabilization of the wave equation on compact manifolds and locally distributed damping—a sharp result.***Journal of Mathematical Analysis and Applications*2009,**351**(2):661-674. 10.1016/j.jmaa.2008.11.008MathSciNetView ArticleMATHGoogle Scholar - Cavalcanti MM, Khemmoudj A, Medjden M:
**Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions.***Journal of Mathematical Analysis and Applications*2007,**328**(2):900-930. 10.1016/j.jmaa.2006.05.070MathSciNetView ArticleMATHGoogle Scholar - Andrade D, Cavalcanti MM, Cavalcanti VND, Oquendo HP:
**Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds.***Journal of Computational Analysis and Applications*2006,**8**(2):173-193.MathSciNetMATHGoogle Scholar - Andrade D, Cavalcanti MM, Cavalcanti VND, Oquendo HP:
**Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds. II.***Journal of Computational Analysis and Applications*2006,**8**(3):287-301.MathSciNetMATHGoogle Scholar - Antunes GO, Crippa HR, da Silva MDG:
**Periodic problem for a nonlinear-damped wave equation on the boundary.***Mathematical Methods in the Applied Sciences*2010,**33**(11):1275-1283.MathSciNetMATHGoogle Scholar - Araruna FD, Antunes GO, Medeiros LA:
**Semilinear wave equation on manifolds.***Annales de la Faculté des Sciences de Toulouse*2002,**11**(1):7-18. 10.5802/afst.1014MathSciNetView ArticleMATHGoogle Scholar - Hu Q-Y, Zhu B, Zhang H-W:
**A decay result to an elliptic equation with dynamical boundary condition.***Chinese Quarterly Journal of Mathematics*2009,**24**(3):365-369.MathSciNetMATHGoogle Scholar - Doronin GG, Larkin NA, Souza AJ: A hyperbolic problem with nonlinear second-order boundary damping. Electronic Journal of Differential Equations 1998, (28):1-10.Google Scholar
- Glassey RT:
**Blow-up theorems for nonlinear wave equations.***Mathematische Zeitschrift*1973,**132:**183-203. 10.1007/BF01213863MathSciNetView ArticleMATHGoogle Scholar - Kirane M, Nabana E, Pohozaev SI:
**Nonexistence of global solutions to an elliptic equation with a dynamical boundary condition.***Boletim da Sociedade Paranaense de Matemática. 3rd Série*2004,**22**(2):9-16.MathSciNetMATHGoogle Scholar - Amann H, Fila M:
**A Fujita-type theorem for the Laplace equation with a dynamical boundary condition.***Acta Mathematica Universitatis Comenianae*1997,**66**(2):321-328.MathSciNetMATHGoogle Scholar - Koleva M, Vulkov L:
**Blow-up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type.***Journal of Computational and Applied Mathematics*2007,**202**(2):414-434. 10.1016/j.cam.2006.02.037MathSciNetView ArticleMATHGoogle Scholar - Vulkov LG:
**Blow up for some quasilinear equations with dynamical boundary conditions of parabolic type.***Applied Mathematics and Computation*2007,**191**(1):89-99. 10.1016/j.amc.2007.01.059MathSciNetView ArticleMATHGoogle Scholar - Belinsky B:
**Eigenvalue problems for elliptic type partial differential operators with spectral parameters contained linearly in boundary conditions.***Proceedings of the 8th International Symposium on Algorithms and Computation (ISAAC '97), December 1997, Singapore*Google Scholar - Escher J:
**Nonlinear elliptic systems with dynamic boundary conditions.***Mathematische Zeitschrift*1992,**210**(3):413-439.MathSciNetView ArticleMATHGoogle Scholar - Fila M, Quittner P:
**Global solutions of the Laplace equation with a nonlinear dynamical boundary condition.***Mathematical Methods in the Applied Sciences*1997,**20**(15):1325-1333. 10.1002/(SICI)1099-1476(199710)20:15<1325::AID-MMA916>3.0.CO;2-GMathSciNetView ArticleMATHGoogle Scholar - Fila M, Quittner P:
**Large time behavior of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition.**In*Topics in Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl.*.*Volume 35*. Birkhäuser, Basel, Switzerland; 1999:251-272.Google Scholar - Koleva M:
**On the computation of blow-up solutions of elliptic equations with semilinear dynamical boundary conditions.***Proceedings of the 4th International Conference on Large-Scale Scientific Computing (LSSC '03), June 2003, Sozopol, Bulgaria, Lecture Notes in Computer Sciences***2907:**105-123.Google Scholar - Koleva MN, Vulkov LG:
**On the blow-up of finite difference solutions to the heat-diffusion equation with semilinear dynamical boundary conditions.***Applied Mathematics and Computation*2005,**161**(1):69-91. 10.1016/j.amc.2003.12.010MathSciNetView ArticleMATHGoogle Scholar - Marinho AO, Lourêdo AT, Lima OA: On a parabolic strongly nonlinear problem on manifolds. Electronic Journal of Qualitative Theory of Differential Equations 2008, (13):1-20.Google Scholar
- Vitillaro E:
**On the Laplace equation with non-linear dynamical boundary conditions.***Proceedings of the London Mathematical Society*2006,**93**(2):418-446. 10.1112/S0024611506015875MathSciNetView ArticleMATHGoogle Scholar - Yin Z:
**Global existence for elliptic equations with dynamic boundary conditions.***Archiv der Mathematik*2003,**81**(5):567-574. 10.1007/s00013-003-0104-xMathSciNetView ArticleMATHGoogle Scholar - Lions JL, Magenes E:
*Nonhomegeneous Boundary Value Problems and Applications*. Springer, New York, NY, USA; 1972.View ArticleMATHGoogle Scholar - Li Y:
**Basic inequalityies and the uniqueness of the solutions for differential equations.***Acta Scientiarum Naturalium Universitatis Jilinensis*1960,**1:**257-293.Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.