- Research Article
- Open Access
- Published:
Positive Solutions of Singular Complementary Lidstone Boundary Value Problems
Boundary Value Problems volume 2010, Article number: 368169 (2010)
Abstract
We investigate the existence of positive solutions of singular problem ,
,
,
. Here,
and the Carathéodory function
may be singular in all its space variables
. The results are proved by regularization and sequential techniques. In limit processes, the Vitali convergence theorem is used.
1. Introduction
Let be a positive constant,
and
,
,
. We consider the singular complementary Lidstone boundary value problem


where satisfies the local Carathéodory function on
(
) with

The function is positive and may be singular at the value zero of all its space variables
.
Let . We say that
is singular at the value zero of its space variable
if for a.e.
and all
,
,
such that
, the relation

holds.
A function (i.e.,
has absolutely continuous
th derivative on
) is a positive solution of problem (1.1), (1.2) if
for
,
satisfies the boundary conditions (1.2) and (1.1) holds a.e. on
.
The regular complementary Lidstone problem

was discussed in [1]. Here, is continuous at least in the interior of the domain of interest. Existence and uniqueness criteria for problem (1.5) are proved by the complementary Lidstone interpolating polynomial of degree
. No contributions exist, as far as we know, concerning the existence of positive solutions of singular complementary Lidstone problems.
We observe that differential equations in complementary Lidstone problems as well as derivatives in boundary conditions are odd orders, in contrast to the Lidstone problem

where the differential equation and derivatives in the boundary conditions are even orders. For (
), regular Lidstone problems were discussed in [2–9], while singular ones in [10–15].
The aim of this paper is to give the conditions on the function in (1.1) which guarantee that the singular problem (1.1), (1.2) has a solution. The existence results are proved by regularization and sequential techniques, and in limit processes, the Vitali convergence theorem [16, 17] is applied.
Throughout the paper, and
,
stands for the norm in
and
, respectively.
denotes the set of functions (Lebesgue) integrable on
and meas
the Lebesgue measure of
.
We work with the following conditions on the function in (1.1).
(H1) and there exists
such that

for a.e. and each
.
(H2) For a.e. and for all
, the inequality

is fulfilled, where is positive and nondecreasing in the second variable,
is nonincreasing,
,

The paper is organized as follows. In Section 2, we construct a sequence of auxiliary regular differential equations associated with (1.1). Section 3 is devoted to the study of auxiliary regular complementary Lidstone problems. We show that the solvability of these problems is reduced to the existence of a fixed point of an operator . The existence of a fixed point of
is proved by a fixed point theorem of cone compression type according to Guo-Krasnosel'skii [18, 19]. The properties of solutions to auxiliary problems are also investigated here. In Section 4, applying the results of Section 3, the existence of a positive solution of the singular problem (1.1), (1.2) is proved.
2. Regularization
Let be from (1.1). For
, define
,
, and
by the formulas

Let . Chose
and put

for . Now, define an auxiliary function
by means of the following recurrence formulas:

for , and

Then, under condition (),
and

Condition () gives


We investigate the regular differential equation

If a function satisfies (2.8) for a.e.
, then
is called a solution of (2.8).
3. Auxiliary Regular Problems
Let and denote by
the Green function of the problem

Then,

By [2, 3, 20], the Green function can be expressed as

and it is known that (see, e.g., [3, 20])

Lemma 3.1 (see [10, Lemmas 2.1 and 2.3]).
For and
, the inequalities


hold.
Let and let
be a solution of the differential equation

satisfying the Lidstone boundary conditions

It follows from the definition of the Green function that

It is easy to check that is a solution of problem (2.8), (1.2) if and only if
, and its derivative
is a solution of a problem involving the functional differential equation

and the Lidstone boundary conditions (3.8). From (3.9) (for ), we see that
is a solution of problem (3.10), (3.8) exactly if it is a solution of the equation

in the set . Consequently,
is a solution of problem (2.8), (1.2) if and only if it is a solution of the equation

in the set . It means that
is a solution of problem (2.8), (1.2) if
is a fixed point of the operator
defined as

We prove the existence of a fixed point of by the following fixed point result of cone compression type according to Guo-Krasnosel'skii (see, e.g., [18, 19]).
Lemma 3.2.
Let be a Banach space, and let
be a cone in
. Let
be bounded open balls of
centered at the origin with
. Suppose that
is completely continuous operator such that

holds. Then, has a fixed point in
.
We are now in the position to prove that problem (2.8), (1.2) has a solution.
Lemma 3.3.
Let () and (
) hold. Then, problem (2.8), (1.2) has a solution.
Proof.
Let the operator be given in (3.13), and let

Then, is a cone in
and since
for
by (3.4) and
satisfies (2.5), we see that
. The fact that
is a completely continuous operator follows from
, from Lebesgue dominated convergence theorem, and from the Arzelà-Ascoli theorem.
Choose and put
for
. Then, (cf. (2.5))

Since and
for
, the equality
holds with some
for
. We now use the equality
and have

Hence, , and so

Next, we deduce from the relation

and from (2.7) that

Therefore,

where . Since
for
, we have

The last inequality together with (3.21) gives

where is from (
). Since
is arbitrary, relations (3.18) and (3.21) imply that for all
, inequalities (3.18) and

hold. By (), there exists
such that

and therefore,

Let

Then, it follows from (3.18), (3.24), and (3.26) that

The conclusion now follows from Lemma 3.2 (for and
).
The properties of solutions to problem (2.8), (1.2) are collected in the following lemma.
Lemma 3.4.
Let () and (
) be satisfied. Let
be a solution of problem (2.8), (1.2). Then, for all
, the following assertions hold:
(i) for
,
, and
for a.e.
,
(ii) is increasing on
, and for
,
is decreasing on
, and there is a unique
such that
,
(iii) there exists a positive constant such that

for ,
(iv) the sequence is bounded in
.
Proof.
Let us choose an arbitrary . By (2.5),

and it follows from the definition of the Green function that the equality

holds for and
. Now, using (1.2), (3.4), (3.30), and (3.31), we see that assertion (i) is true. Hence,
is decreasing on
for
and
is increasing on this interval. Due to
for
, there exists a unique
such that
for
. Consequently, assertion (ii) holds.
Next, in view of (2.5), (3.6), and (3.31),

Since

and, by [13, Lemma 6.2],

we have

Furthermore,

and (cf. (3.32) for )

since on
by assertion (ii). Let

where

Then estimate (3.29) follows from relations (3.32)–(3.37).
It remains to prove the boundedness of the sequence in
. We use estimate (3.29), the properties of
given in (
), and the inequality

and have

In particular,

for all . Now, from the above estimates, from (2.6) and from
for some
, which is proved in (ii), we get

where

Notice that by (
). Consequently,

Since for
, which follows from the fact that
vanishes in
by (1.2) and assertion (ii), inequality (3.45) yields

where is from (
). Due to the condition

in (), there exists a positive constant
such that for all
the inequality

is fulfilled. The last inequality together with estimate (3.46) gives for
. Consequently,
for
,
, and assertion (iv) follows.
The following result gives the important property of for applying the Vitali convergent theorem in the proof of Theorem 4.1.
Lemma 3.5.
Let () and (
) hold. Let
be a solution of problem (2.8), (1.2). Then, the sequence

is uniformly integrable on , that is, for each
, there exists
such that if
and
, then

Proof.
By Lemma 3.4 (iv), there exists such that for
, the inequality
holds. Now, we conclude from (2.5) and (2.6), from the properties of
and
given in
, and finally from (3.29) that for
and
, the estimate

is fulfilled, where is a positive constant. Since the functions
,
, and
(
) belong to the set
by assumption (
), in order to prove that
is uniformly integrable on
, it suffices to show that the sequences

are uniformly integrable on . Due to
and
for
by (
), this fact follows from [13, Criterion 11.10 (with
and
)].
4. The Main Result
The following theorem is the existence result for the singular problem (1.1), (1.2).
Theorem 4.1.
Let () and (
) hold. Then, problem (1.1), (1.2) has a positive solution
and

Proof.
Lemma 3.3 guarantees that problem (2.8), (1.2) has a solution . Consider the sequence
. By Lemma 3.4,
is bounded in
,

and fulfils estimate (3.29), where
is a positive constant and
. Furthermore, the sequence
is uniformly integrable on
by Lemma 3.5, and therefore, we deduce from the equality
for a.e.
that
is equicontinuous on
. Now, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, we may assume without loss of generality that
is convergent in
and
is convergent in
for
. Let
and
(
). Then
and
satisfies the boundary conditions (1.2). Letting
in (3.29) and (4.2), we get (for
)

Keeping in mind the definition of , we conclude from (4.3) that

Then, by the Vitali theorem, and

Letting in the equality

we get

As a result, and
is a solution of (1.1). Consequently,
is a positive solution of problem (1.1), (1.2) and inequality (4.1) follows from (4.3).
Example 4.2.
Consider problem (1.1), (1.2) with

on , where
,
(that is,
is essentially bounded and measurable on
) are nonnegative,
for a.e.
. If
for
and
,
for
, then, by Theorem 4.1, the problem has a positive solution
satisfying inequality (4.1).
References
Agarwal RP, Pinelas S, Wong PJY: Complementary Lidstone interpolation and boundary value problems. Journal of Inequalities and Applications 2009, 2009:-30.
Agarwal RP: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Teaneck, NJ, USA; 1986:xii+307.
Agarwal RP, Wong PJY: Lidstone polynomials and boundary value problems. Computers & Mathematics with Applications 1989,17(10):1397-1421. 10.1016/0898-1221(89)90023-0
Davis JM, Henderson J, Wong PJY: General Lidstone problems: multiplicity and symmetry of solutions. Journal of Mathematical Analysis and Applications 2000,251(2):527-548. 10.1006/jmaa.2000.7028
Guo Y, Gao Y: The method of upper and lower solutions for a Lidstone boundary value problem. Czechoslovak Mathematical Journal 2005,55(130)(3):639-652.
Ma Y: Existence of positive solutions of Lidstone boundary value problems. Journal of Mathematical Analysis and Applications 2006,314(1):97-108.
Wong PJY, Agarwal RP: Results and estimates on multiple solutions of Lidstone boundary value problems. Acta Mathematica Hungarica 2000,86(1-2):137-168.
Yang Y-R, Cheng SS: Positive solutions of a Lidstone boundary value problem with variable coefficient function. Journal of Applied Mathematics and Computing 2008,27(1-2):411-419. 10.1007/s12190-008-0066-z
Zhang B, Liu X: Existence of multiple symmetric positive solutions of higher order Lidstone problems. Journal of Mathematical Analysis and Applications 2003,284(2):672-689. 10.1016/S0022-247X(03)00386-X
Agarwal RP, O'Regan D, Rachůnková I, Staněk S: Two-point higher-order BVPs with singularities in phase variables. Computers & Mathematics with Applications 2003,46(12):1799-1826. 10.1016/S0898-1221(03)90238-0
Agarwal RP, O'Regan D, Staněk S: Singular Lidstone boundary value problem with given maximal values for solutions. Nonlinear Analysis: Theory, Methods & Applications 2003,55(7-8):859-881. 10.1016/j.na.2003.06.001
Rachůnková I, Staněk S, Tvrdý M: Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations. In Handbook of Differential Equations: Ordinary Differential Equations. Vol. III, Handb. Differ. Equ.. Edited by: Cañada A, Drábek P, Fonda A. Elsevier/North-Holland, Amsterdam, The Netherlands; 2006:607-722.
Rachůnková I, Staněk S, Tvrdý M: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, Contemporary Mathematics and Its Applications. Volume 5. Hindawi Publishing Corporation, New York, NY, USA; 2008:x+268.
Wei Z: Existence of positive solutions for n th-order singular sublinear boundary value problems. Journal of Mathematical Analysis and Applications 2005,306(2):619-636. 10.1016/j.jmaa.2004.10.037
Zhao Z: On the existence of positive solutions for n -order singular boundary value problems. Nonlinear Analysis: Theory, Methods & Applications 2006,64(11):2553-2561. 10.1016/j.na.2005.09.003
Bartle RG: A Modern Theory of Integration, Graduate Studies in Mathematics. Volume 32. American Mathematical Society, Providence, RI, USA; 2001:xiv+458.
Natanson IP: Theorie der Funktionen einer reellen Veränderlichen, Mathematische Lehrbücher und Monographien. Akademie, Berlin, USA; 1969:xii+590.
Guo DJ, Lakshmikantham V: Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering. Volume 5. Academic Press, Boston, Mass, USA; 1988:viii+275.
Krasnosel'skii MA: Positive Solutions of Operator Equations. P. Noordhoff, Groningen, The Netherlands; 1964:381.
Agarwal RP, Wong PJY: Error Inequalities in Polynomial Interpolation and Their Applications, Mathematics and Its Applications. Volume 262. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1993:x+365.
Acknowledgment
This work was supported by the Council of Czech Government MSM no. 6198959214.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Agarwal, R., O'Regan, D. & Staněk, S. Positive Solutions of Singular Complementary Lidstone Boundary Value Problems. Bound Value Probl 2010, 368169 (2010). https://doi.org/10.1155/2010/368169
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/368169
Keywords
- Differential Equation
- Positive Constant
- Green Function
- Point Theorem
- Existence Result