- Research Article
- Open access
- Published:
Positive Solutions for Integral Boundary Value Problem with ϕ-Laplacian Operator
Boundary Value Problems volume 2011, Article number: 827510 (2011)
Abstract
We consider the existence, multiplicity of positive solutions for the integral boundary value problem with -Laplacian
,
,
,
, where
is an odd, increasing homeomorphism from
onto
. We show that it has at least one, two, or three positive solutions under some assumptions by applying fixed point theorems. The interesting point is that the nonlinear term
is involved with the first-order derivative explicitly.
1. Introduction
We are interested in the existence of positive solutions for the integral boundary value problem

where , and
satisfy the following conditions.
(H1) is an odd, increasing homeomorphism from
onto
, and there exist two increasing homeomorphisms
and
of
onto
such that

Moreover, , where
denotes the inverse of
.
(H2) is continuous.
are nonnegative, and
,
.
The assumption (H1) on the function was first introduced by Wang [1, 2], it covers two important cases:
and
. The existence of positive solutions for two above cases received wide attention (see [3–10]). For example, Ji and Ge [4] studied the multiplicity of positive solutions for the multipoint boundary value problem

where ,
. They provided sufficient conditions for the existence of at least three positive solutions by using Avery-Peterson fixed point theorem. In [5], Feng et al. researched the boundary value problem

where the nonlinear term does not depend on the first-order derivative and
,
. They obtained at least one or two positive solutions under some assumptions imposed on the nonlinearity of
by applying Krasnoselskii fixed point theorem.
As for integral boundary value problem, when is linear, the existence of positive solutions has been obtained (see [8–10]). In [8], the author investigated the positive solutions for the integral boundary value problem

The main tools are the priori estimate method and the Leray-Schauder fixed point theorem. However, there are few papers dealing with the existence of positive solutions when satisfies (H1) and
depends on both
and
. This paper fills this gap in the literature. The aim of this paper is to establish some simple criteria for the existence of positive solutions of BVP(1.1). To get rid of the difficulty of
depending on
, we will define a special norm in Banach space (in Section 2).
This paper is organized as follows. In Section 2, we present some lemmas that are used to prove our main results. In Section 3, the existence of one or two positive solutions for BVP(1.1) is established by applying the Krasnoselskii fixed point theorem. In Section 4, we give the existence of three positive solutions for BVP(1.1) by using a new fixed point theorem introduced by Avery and Peterson. In Section 5, we give some examples to illustrate our main results.
2. Preliminaries
The basic space used in this paper is a real Banach space with norm
defined by
, where
. Let

It is obvious that is a cone in
.
Lemma 2.1 (see [7]).
Let , then
,
.
Lemma 2.2.
Let , then there exists a constant
such that
.
Proof.
The mean value theorem guarantees that there exists , such that

Moreover, the mean value theorem of differential guarantees that there exists , such that

So we have

Denote ; then the proof is complete.
Lemma 2.3.
Assume that (H1), (H2) hold. If is a solution of BVP(1.1), there exists a unique
, such that
and
,
.
Proof.
From the fact that , we know that
is strictly decreasing. It follows that
is also strictly decreasing. Thus,
is strictly concave on [0, 1]. Without loss of generality, we assume that
. By the concavity of
, we know that
,
. So we get
. By
, it is obvious that
. Hence,
,
.
On the other hand, from the concavity of , we know that there exists a unique
where the maximum is attained. By the boundary conditions and
, we know that
or 1, that is,
such that
and then
.
Lemma 2.4.
Assume that (H1), (H2) hold. Suppose is a solution of BVP(1.1); then

or

Proof.
First, by integrating (1.1) on , we have

then

Thus

or

According to the boundary condition, we have

By a similar argument in [5], ; then the proof is completed.
Now we define an operator by

Lemma 2.5.
is completely continuous.
Proof.
Let ; then from the definition of
, we have

So is monotone decreasing continuous and
. Hence,
is nonnegative and concave on [0, 1]. By computation, we can get
. This shows that
. The continuity of
is obvious since
is continuous. Next, we prove that
is compact on
.
Let be a bounded subset of
and
is a constant such that
for
. From the definition of
, for any
, we get

Hence, is uniformly bounded and equicontinuous. So we have that
is compact on
. From (2.13), we know for
,
, such that when
, we have
. So
is compact on
; it follows that
is compact on
. Therefore,
is compact on
.
Thus, is completely continuous.
It is easy to prove that each fixed point of is a solution for BVP(1.1).
Lemma 2.6 (see [1]).
Assume that (H1) holds. Then for ,

To obtain positive solution for BVP(1.1), the following definitions and fixed point theorems in a cone are very useful.
Definition 2.7.
The map is said to be a nonnegative continuous concave functional on a cone of a real Banach space
provided that
is continuous and

for all and
. Similarly, we say the map
is a nonnegative continuous convex functional on a cone of a real Banach space
provided that
is continuous and

for all and
.
Let and
be a nonnegative continuous convex functionals on
,
a nonnegative continuous concave functional on
, and
a nonnegative continuous functional on
. Then for positive real number
, and
, we define the following convex sets:

Theorem 2.8 (see [11]).
Let be a real Banach space and
a cone. Assume that
and
are two bounded open sets in
with
,
. Let
be completely continuous. Suppose that one of following two conditions is satisfied:
(1),
, and
,
;
(2),
, and
,
.
Then has at least one fixed point in
.
Theorem 2.9 (see [12]).
Let be a cone in a real Banach space
. Let
and
be a nonnegative continuous convex functionals on
,
a nonnegative continuous concave functional on
, and
a nonnegative continuous functional on
satisfying
for
, such that for positive number
and
,

for all . Suppose
is completely continuous and there exist positive numbers
, and
with
such that
and
for
;
() for
with
;
() and
for
with
.
Then has at least three fixed points
, such that
for
,
,
with
,
.
3. The Existence of One or Two Positive Solutions
For convenience, we denote

where denotes 0 or
.
Theorem 3.1.
Assume that (H1) and (H2) hold. In addition, suppose that one of following conditions is satisfied.
-
(i)
There exist two constants
with
such that
(a) for
and
(b) for
;
(ii);
(iii).
Then BVP(1.1) has at least one positive solution.
Proof.
-
(i)
Let
,
.
For , we obtain
and
, which implies
. Hence, by (2.12) and Lemma 2.6,

This implies that

Next, for , we have
. Thus, by (2.12) and Lemma 2.6,

From (2.13), we have

This implies that

Therefore, by Theorem 2.8, it follows that has a fixed point in
. That is BVP(1.1) has at least one positive solution such that
.
-
(ii)
Considering
, there exists
such that
(3.7)
Choosing such that

then for all , let
. For every
, we have
. In the following, we consider two cases.
Case 1 ().
In this case,

Case 2 ().
In this case,

Then it is similar to the proof of (3.6); we have for
.
Next, turning to , there exists
such that

Let . For every
, we have
. So

Then like in the proof of (3.3), we have for
. Hence, BVP(1.1) has at least one positive solution such that
.
-
(iii)
The proof is similar to the (i) and (ii); here we omit it.
In the following, we present a result for the existence of at least two positive solutions of BVP(1.1).
Theorem 3.2.
Assume that (H1) and (H2) hold. In addition, suppose that one of following conditions is satisfied.
(I),
, and there exists
such that

(II),
, and there exists
such that

Then BVP(1.1) has at least two positive solutions.
4. The Existence of Three Positive Solutions
In this section, we impose growth conditions on which allow us to apply Theorem 2.9 of BVP(1.1).
Let the nonnegative continuous concave functional , the nonnegative continuous convex functionals
,
, and nonnegative continuous functional
be defined on cone
by

By Lemmas 2.1 and 2.2, the functionals defined above satisfy

for all . Therefore, the condition (2.19) of Theorem 2.9 is satisfied.
Theorem 4.1.
Assume that (H1) and (H2) hold. Let and suppose that
satisfies the following conditions:
for
;
for
.
for
;
Then BVP(1.1) has at least three positive solutions , and
satisfying

where defined as (3.1),
.
Proof.
We will show that all the conditions of Theorem 2.9 are satisfied.
If , then
. With Lemma 2.2 implying
, so by (
), we have
when
. Thus

This proves that .
To check condition () of Theorem 2.9, we choose

Let

Then and
, so
. Hence, for
, there is
,
when
. From assumption (
), we have

It is similar to the proof of assumption (i) of Theorem 3.1; we can easily get that

This shows that condition () of Theorem 2.9 is satisfied.
Secondly, for with
, we have

Thus condition () of Theorem 2.9 holds.
Finally, as , there holds
. Suppose that
with
; then by the assumption (
),

So like in the proof of assumption (i) of Theorem 3.1, we can get

Hence condition () of Theorem 2.9 is also satisfied.
Thus BVP(1.1) has at least three positive solutions , and
satisfying

5. Examples
In this section, we give three examples as applications.
Example 5.1.
Let ,
. Now we consider the BVP

where for
.
Let ,
. Choosing
. By calculations we obtain

For ,

for ,

Hence, by Theorem 3.1, BVP(5.1) has at least one positive solution.
Example 5.2.
Let ,
. Consider the BVP

where for
.
Let ,
. Then
. It easy to see

Choosing , for
,
.

Hence, by Theorem 3.2, BVP(5.5) has at least two positive solutions.
Example 5.3.
Let ,
; consider the boundary value problem

where

Choosing ,
,
,
, then by calculations we obtain that

It is easy to check that

Thus, according to Theorem 4.1, BVP(5.8) has at least three positive solutions , and
satisfying

References
Wang H: On the number of positive solutions of nonlinear systems. Journal of Mathematical Analysis and Applications 2003, 281(1):287–306.
Wang H: On the structure of positive radial solutions for quasilinear equations in annular domains. Advances in Differential Equations 2003, 8(1):111–128.
Wang J: The existence of positive solutions for the one-dimensional p -Laplacian. Proceedings of the American Mathematical Society 1997, 125(8):2275–2283. 10.1090/S0002-9939-97-04148-8
Ji D, Ge W: Multiple positive solutions for some p -Laplacian boundary value problems. Applied Mathematics and Computation 2007, 187(2):1315–1325. 10.1016/j.amc.2006.09.041
Feng H, Ge W, Jiang M: Multiple positive solutions for m -point boundary-value problems with a one-dimensional p -Laplacian. Nonlinear Analysis: Theory, Methods & Applications 2008, 68(8):2269–2279. 10.1016/j.na.2007.01.052
Liu B: Positive solutions of three-point boundary value problems for the one-dimensional p -Laplacian with infinitely many singularities. Applied Mathematics Letters 2004, 17(6):655–661. 10.1016/S0893-9659(04)90100-0
Wang Z, Zhang J: Positive solutions for one-dimensional p -Laplacian boundary value problems with dependence on the first order derivative. Journal of Mathematical Analysis and Applications 2006, 314(2):618–630. 10.1016/j.jmaa.2005.04.012
Yang Z: Existence and uniqueness of positive solutions for an integral boundary value problem. Nonlinear Analysis: Theory, Methods & Applications 2008, 69(11):3910–3918. 10.1016/j.na.2007.10.026
Kong L: Second order singular boundary value problems with integral boundary conditions. Nonlinear Analysis: Theory, Methods & Applications 2010, 72(5):2628–2638. 10.1016/j.na.2009.11.010
Boucherif A: Second-order boundary value problems with integral boundary conditions. Nonlinear Analysis: Theory, Methods & Applications 2009, 70(1):364–371. 10.1016/j.na.2007.12.007
Guo DJ, Lakshmikantham V: Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering. Volume 5. Academic Press, Boston, Mass, USA; 1988:viii+275.
Avery RI, Peterson AC: Three positive fixed points of nonlinear operators on ordered Banach spaces. Computers & Mathematics with Applications 2001, 42(3–5):313–322.
Acknowledgments
The research was supported by NNSF of China (10871160), the NSF of Gansu Province (0710RJZA103), and Project of NWNU-KJCXGC-3-47.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ding, Y. Positive Solutions for Integral Boundary Value Problem with ϕ-Laplacian Operator. Bound Value Probl 2011, 827510 (2011). https://doi.org/10.1155/2011/827510
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2011/827510