Skip to main content


Existence of positive solution for second-order impulsive boundary value problems on infinity intervals

Article metrics

  • 713 Accesses

  • 3 Citations


We deal with the existence of positive solutions to impulsive second-order differential equations subject to some boundary conditions on the semi-infinity interval.



  1. 1.

    Agarwal RP, O'Regan D: Boundary value problems of nonsingular type on the semi-infinite interval. Tohoku Mathematical Journal 1999,51(3):391-397. 10.2748/tmj/1178224769

  2. 2.

    Agarwal RP, O'Regan D: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht; 2001:x+341.

  3. 3.

    Agarwal RP, O'Regan D: Infinite interval problems arising in non-linear mechanics and non-Newtonian fluid flows. International Journal of Non-Linear Mechanics 2003,38(9):1369-1376. 10.1016/S0020-7462(02)00076-8

  4. 4.

    Agarwal RP, O'Regan D: Infinite interval problems modeling phenomena which arise in the theory of plasma and electrical potential theory. Studies in Applied Mathematics 2003,111(3):339-358. 10.1111/1467-9590.t01-1-00237

  5. 5.

    Agarwal RP, O'Regan D: An infinite interval problem arising in circularly symmetric deformations of shallow membrane caps. International Journal of Non-Linear Mechanics 2004,39(5):779-784. 10.1016/S0020-7462(03)00041-6

  6. 6.

    Agarwal RP, O'Regan D: A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem. Applied Mathematics and Computation 2005,161(2):433-439. 10.1016/j.amc.2003.12.096

  7. 7.

    Agarwal RP, O'Regan D, Wong PJY: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht; 1999:xii+417.

  8. 8.

    Baĭnov D, Simeonov P: Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics. Volume 66. Longman Scientific & Technical, Harlow; 1993:x+228.

  9. 9.

    Benchohra M, Henderson J, Ntouyas SK, Ouahab A: Impulsive functional differential equations with variable times. Computers & Mathematics with Applications 2004,47(10-11):1659-1665. 10.1016/j.camwa.2004.06.013

  10. 10.

    Benchohra M, Ntouyas SK, Ouahab A: Existence results for second order boundary value problem of impulsive dynamic equations on time scales. Journal of Mathematical Analysis and Applications 2004,296(1):65-73. 10.1016/j.jmaa.2004.02.057

  11. 11.

    Constantin A: On an infinite interval boundary value problem. Annali di Matematica Pura ed Applicata. Serie Quarta 1999, 176: 379-394. 10.1007/BF02506002

  12. 12.

    Ma R: Existence of positive solutions for second-order boundary value problems on infinity intervals. Applied Mathematics Letters 2003,16(1):33-39. 10.1016/S0893-9659(02)00141-6

  13. 13.

    Mawhin J: Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics. Volume 40. American Mathematical Society, Rhode Island; 1979:v+122.

  14. 14.

    Nieto JJ: Impulsive resonance periodic problems of first order. Applied Mathematics Letters 2002,15(4):489-493. 10.1016/S0893-9659(01)00163-X

  15. 15.

    Yan B: Boundary value problems on the half-line with impulses and infinite delay. Journal of Mathematical Analysis and Applications 2001,259(1):94-114. 10.1006/jmaa.2000.7392

Download references

Author information

Correspondence to Jianli Li.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article


  • Boundary Condition
  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation