Skip to main content

Blowup for degenerate and singular parabolic system with nonlocal source

Abstract

We deal with the blowup properties of the solution to the degenerate and singular parabolic system with nonlocal source and homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution that exists globally or blows up in finite time are obtained. Furthermore, under certain conditions it is proved that the blowup set of the solution is the whole domain.

[1234567891011121314151617181920]

References

  1. 1.

    Budd C, Dold B, Stuart A: Blowup in a partial differential equation with conserved first integral. SIAM Journal on Applied Mathematics 1993,53(3):718-742. 10.1137/0153036

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Budd C, Galaktionov VA, Chen J: Focusing blow-up for quasilinear parabolic equations. Proceedings of the Royal Society of Edinburgh. Section A 1998,128(5):965-992. 10.1017/S0308210500030018

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Chan CY, Chan WY: Existence of classical solutions for degenerate semilinear parabolic problems. Applied Mathematics and Computation 1999,101(2-3):125-149. 10.1016/S0096-3003(98)10002-4

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chan CY, Liu HT: Global existence of solutions for degenerate semilinear parabolic problems. Nonlinear Analysis 1998,34(4):617-628. 10.1016/S0362-546X(97)00599-3

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Chan CY, Yang J: Complete blow-up for degenerate semilinear parabolic equations. Journal of Computational and Applied Mathematics 2000,113(1-2):353-364. 10.1016/S0377-0427(99)00266-6

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Chen YP, Liu Q, Xie CH: Blow-up for degenerate parabolic equations with nonlocal source. Proceedings of the American Mathematical Society 2004,132(1):135-145. 10.1090/S0002-9939-03-07090-4

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Chen YP, Xie CH: Blow-up for degenerate, singular, semilinear parabolic equations with nonlocal source. Acta Mathematica Sinica 2004,47(1):41-50.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Dunford N, Schwartz JT: Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space. John Wiley & Sons, New York; 1963:ix+pp. 859–1923+7.

    Google Scholar 

  9. 9.

    Floater MS: Blow-up at the boundary for degenerate semilinear parabolic equations. Archive for Rational Mechanics and Analysis 1991,114(1):57-77. 10.1007/BF00375685

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Friedman A, McLeod B: Blow-up of positive solutions of semilinear heat equations. Indiana University Mathematics Journal 1985,34(2):425-447. 10.1512/iumj.1985.34.34025

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Laddle GS, Lakshmikantham V, Vatsala AS: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Massachusetts; 1985.

    Google Scholar 

  12. 12.

    Ladyženskaja OA, Solonikiv VA, Ural'ceva NN: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs. Volume 23. American Mathematical Society, Rhode Island; 1967:xi+648.

    Google Scholar 

  13. 13.

    Mclachlan NW: Bessel Functions for Engineers. 2nd edition. Clarendon Press, Oxford University Press, London; 1955.

    Google Scholar 

  14. 14.

    Ockendon H: Channel flow with temperature-dependent viscosity and internal viscous dissipation. Journal of Fluid Mechanics 1979, 93: 737-746. 10.1017/S0022112079002007

    Article  MATH  Google Scholar 

  15. 15.

    Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum, New York; 1992:xvi+777.

    Google Scholar 

  16. 16.

    Qi Y-W, Levine HA: The critical exponent of degenerate parabolic systems. Zeitschrift für Angewandte Mathematik und Physik 1993,44(2):249-265. 10.1007/BF00914283

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Samarskii AA, Galaktionov VA, Kurdyumov SP, Mikhailoi AP: Blow-up in Qusilinear Parabolic Equations. Nauka, Moscow; 1987.

    Google Scholar 

  18. 18.

    Souplet P: Blow-up in nonlocal reaction-diffusion equations. SIAM Journal on Mathematical Analysis 1998,29(6):1301-1334. 10.1137/S0036141097318900

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Souplet P: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. Journal of Differential Equations 1999,153(2):374-406. 10.1006/jdeq.1998.3535

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Wang MX, Wang YM: Properties of positive solutions for non-local reaction-diffusion problems. Mathematical Methods in the Applied Sciences 1996,19(14):1141-1156. 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zhou, J., Mu, C. & Li, Z. Blowup for degenerate and singular parabolic system with nonlocal source. Bound Value Probl 2006, 21830 (2006). https://doi.org/10.1155/BVP/2006/21830

Download citation

Keywords

  • Boundary Condition
  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation