Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Parabolic inequalities with nonstandard growths and data

Abstract

We prove an existence result for solutions of nonlinear parabolic inequalities with data in Orlicz spaces.

[1234567891011121314]

References

  1. 1.

    Adams RA: Sobolev Spaces, Pure and Applied Mathematics. Volume 65. Academic Press, New York; 1975:xviii+268.

    Google Scholar 

  2. 2.

    Donaldson T: Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems. Journal of Differential Equations 1974,16(2):201-256. 10.1016/0022-0396(74)90012-6

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Elmahi A, Meskine D: Parabolic equations in Orlicz spaces. Journal of the London Mathematical Society. Second Series 2005,72(2):410-428. 10.1112/S0024610705006630

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Elmahi A, Meskine D:Strongly nonlinear parabolic equations with natural growth terms and data in Orlicz spaces. Portugaliae Mathematica. Nova Série 2005,62(2):143-183.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Elmahi A, Meskine D: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Analysis. Theory, Methods & Applications 2005,60(1):1-35.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Gossez J-P: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Transactions of the American Mathematical Society 1974, 190: 163-205.

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Gossez J-P: Some approximation properties in Orlicz-Sobolev spaces. Studia Mathematica 1982,74(1):17-24.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gossez J-P: A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces. In Nonlinear Functional Analysis and Its Applications, Part 1 (Berkeley, Calif, 1983), Proc. Sympos. Pure Math.. Volume 45. American Mathematical Society, Rhode Island; 1986:455-462.

    Google Scholar 

  9. 9.

    Gossez J-P, Mustonen V: Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Analysis. Theory, Methods & Applications 1987,11(3):379-392. 10.1016/0362-546X(87)90053-8

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Le VK, Schmitt K: Quasilinear elliptic equations and inequalities with rapidly growing coefficients. Journal of the London Mathematical Society. Second Series 2000,62(3):852-872. 10.1112/S0024610700001423

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Robert J: Inéquations variationnelles paraboliques fortement non linéaires. Journal de Mathématiques Pures et Appliquées. Neuvième Série 1974, 53: 299-320.

    MATH  Google Scholar 

  12. 12.

    Rudd M: Nonlinear constrained evolution in Banach spaces, M.S. thesis. University of Utah, Utah; 2003.

    Google Scholar 

  13. 13.

    Rudd M: Weak and strong solvability of parabolic variational inequalities in Banach spaces. Journal of Evolution Equations 2004,4(4):497-517. 10.1007/s00028-004-0153-z

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Rudd M, Schmitt K: Variational inequalities of elliptic and parabolic type. Taiwanese Journal of Mathematics 2002,6(3):287-322.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D Meskine.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aboulaich, R., Achchab, B., Meskine, D. et al. Parabolic inequalities with nonstandard growths and data. Bound Value Probl 2006, 29286 (2006). https://doi.org/10.1155/BVP/2006/29286

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Existence Result