Skip to main content

Entire positive solution to the system of nonlinear elliptic equations

Abstract

The second-order nonlinear elliptic system, with, is considered in. Under suitable hypotheses on functions,,, and, it is shown that this system possesses an entire positive solution such that both and are bounded below and above by positive constant multiples of for all.

[123456789101112131415161718192021]

References

  1. 1.

    Adams RA: Sobolev Spaces. Academic Press, New York; 1975:xviii+268.

    Google Scholar 

  2. 2.

    Aronson D, Crandall MG, Peletier LA: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Analysis 1982,6(10):1001-1022. 10.1016/0362-546X(82)90072-4

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Callegari A, Nachman A: Some singular, nonlinear differential equations arising in boundary layer theory. Journal of Mathematical Analysis and Applications 1978,64(1):96-105. 10.1016/0022-247X(78)90022-7

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    de Figueiredo DG, Yang J: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Analysis, Theory, Methods & Applications 1998,33(3):211-234. 10.1016/S0362-546X(97)00548-8

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    de Mottoni P, Schiaffino A, Tesei A: Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems. Annali di Matematica Pura ed Applicata, Serie Quarta 1984, 136: 35-48. 10.1007/BF01773375

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Edelson AL: Entire solutions of singular elliptic equations. Journal of Mathematical Analysis and Applications 1989,139(2):523-532. 10.1016/0022-247X(89)90126-1

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Fukagai N: On decaying entire solutions of second order sublinear elliptic equations. Hiroshima Mathematical Journal 1985,14(3):551-562.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gilbarg D, Trudinger NS: Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences. Volume 224. 2nd edition. Springer, Berlin; 1983:xiii+513.

    Google Scholar 

  9. 9.

    Gurtin ME, MacCamy RC: On the diffusion of biological populations. Mathematical Biosciences 1977,33(1-2):35-49. 10.1016/0025-5564(77)90062-1

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Kawano N: On bounded entire solutions of semilinear elliptic equations. Hiroshima Mathematical Journal 1984,14(1):125-158.

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Kawano N, Kusano T: On positive entire solutions of a class of second order semilinear elliptic systems. Mathematische Zeitschrift 1984,186(3):287-297. 10.1007/BF01174883

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Ladyzhenskaya OA, Ural'tseva NN: Linear and Quasilinear Elliptic Equations. Academic Press, New York; 1968:xviii+495.

    Google Scholar 

  13. 13.

    Nachman A, Callegari A: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM Journal on Applied Mathematics 1980,38(2):275-281. 10.1137/0138024

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Naito M: A note on bounded positive entire solutions of semilinear elliptic equations. Hiroshima Mathematical Journal 1984,14(1):211-214.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Okubo A: Diffusion and Ecological Problems: Mathematical Models, Biomathematics. Volume 10. Springer, Berlin; 1980:xiii+254.

    Google Scholar 

  16. 16.

    Serrin J, Zou H: Existence of positive entire solutions of elliptic Hamiltonian systems. Communications in Partial Differential Equations 1998,23(3-4):577-599.

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Shi J, Yao M: On a singular nonlinear semilinear elliptic problem. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1998,128(6):1389-1401. 10.1017/S0308210500027384

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Swanson CA: Extremal positive solutions of semilinear Schrödinger equations. Canadian Mathematical Bulletin 1983,26(2):171-178. 10.4153/CMB-1983-028-3

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Teramoto T: Existence and nonexistence of positive entire solutions of second order semilinear elliptic systems. Funkcialaj Ekvacioj 1999,42(2):241-260.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Wang LZ, Huang AX: Existence of positive solutions of a kind of reaction-diffusion system. Journal of Xi'an Jiaotong University 2002,36(2):211-213.

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Yarur CS: Existence of continuous and singular ground states for semilinear elliptic systems. Electronic Journal of Differential Equations 1998,1998(1):1-27.

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lingyun Qiu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qiu, L., Yao, M. Entire positive solution to the system of nonlinear elliptic equations. Bound Value Probl 2006, 32492 (2006). https://doi.org/10.1155/BVP/2006/32492

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Elliptic Equation