Skip to main content

Advertisement

Radial solutions for a nonlocal boundary value problem

Article metrics

  • 662 Accesses

  • 1 Citations

Abstract

We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term,. We prove the existence of a positive radial solution when grows linearly in, using Krasnoselskiiés fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.

[1234567891011121314]

References

  1. 1.

    Bebernes JW, Lacey AA: Global existence and finite-time blow-up for a class of nonlocal parabolic problems. Advances in Differential Equations 1997,2(6):927-953.

  2. 2.

    Chang N-H, Chipot M: On some mixed boundary value problems with nonlocal diffusion. Advances in Mathematical Sciences and Applications 2004,14(1):1-24.

  3. 3.

    De Coster C, Habets P: The lower and upper solutions method for boundary value problems. In Handbook of Differential Equations. Elsevier, New York; North-Holland, Amsterdam; 2004:69-160.

  4. 4.

    Deimling K: Nonlinear Functional Analysis. Springer, Berlin; 1985:xiv+450.

  5. 5.

    Fijałkowski P, Przeradzki B: On a radial positive solution to a nonlocal elliptic equation. Topological Methods in Nonlinear Analysis 2003,21(2):293-300.

  6. 6.

    Freitas P, Sweers G: Positivity results for a nonlocal elliptic equation. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1998,128(4):697-715. 10.1017/S0308210500021727

  7. 7.

    Gomes JM, Sanchez L: On a variational approach to some non-local boundary value problems. Applicable Analysis 2005,84(9):909-925. 10.1080/00036810500048202

  8. 8.

    Gaudenzi M, Habets P, Zanolin F: Positive solutions of singular boundary value problems with indefinite weight. Bulletin of the Belgian Mathematical Society. Simon Stevin 2002,9(4):607-619.

  9. 9.

    Jiang D, Gao W, Wan A: A monotone method for constructing extremal solutions to fourth-order periodic boundary value problems. Applied Mathematics and Computation 2002,132(2-3):411-421. 10.1016/S0096-3003(01)00201-6

  10. 10.

    Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York; 1992:xvi+777.

  11. 11.

    Smirnov V: Cours de Mathématiques Supérieures. Volume 2. Mir, Moscoú; 1970.

  12. 12.

    Walter W: Ordinary Differential Equations, Graduate Texts in Mathematics. Volume 182. Springer, New York; 1998:xii+380.

  13. 13.

    Yang Z: Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Analysis. Theory, Methods & Applications 2005,62(7):1251-1265. 10.1016/j.na.2005.04.030

  14. 14.

    Zeidler E: Nonlinear Functional Analysis and Its Applications—I : Fixed-Point Theorems. Springer, New York; 1986:xxi+897.

Download references

Author information

Correspondence to Luís Sanchez.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Point Theorem