Skip to content

Advertisement

  • Research Article
  • Open Access

Radial solutions for a nonlocal boundary value problem

Boundary Value Problems20062006:32950

https://doi.org/10.1155/BVP/2006/32950

  • Received: 23 August 2005
  • Accepted: 22 December 2005
  • Published:

Abstract

We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term , . We prove the existence of a positive radial solution when grows linearly in , using Krasnoselskiiés fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Point Theorem

[1234567891011121314]

Authors’ Affiliations

(1)
Área Científica de Matemática, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, Lisboa, 1-1950-062, Portugal
(2)
Faculdade de Ciências da Universidade de Lisboa, Avenida Professor Gama Pinto 2, Lisboa, 1649-003, Portugal

References

  1. Bebernes JW, Lacey AA: Global existence and finite-time blow-up for a class of nonlocal parabolic problems. Advances in Differential Equations 1997,2(6):927-953.MathSciNetMATHGoogle Scholar
  2. Chang N-H, Chipot M: On some mixed boundary value problems with nonlocal diffusion. Advances in Mathematical Sciences and Applications 2004,14(1):1-24.MathSciNetGoogle Scholar
  3. De Coster C, Habets P: The lower and upper solutions method for boundary value problems. In Handbook of Differential Equations. Elsevier, New York; North-Holland, Amsterdam; 2004:69-160.Google Scholar
  4. Deimling K: Nonlinear Functional Analysis. Springer, Berlin; 1985:xiv+450.View ArticleMATHGoogle Scholar
  5. Fijałkowski P, Przeradzki B: On a radial positive solution to a nonlocal elliptic equation. Topological Methods in Nonlinear Analysis 2003,21(2):293-300.MathSciNetMATHGoogle Scholar
  6. Freitas P, Sweers G: Positivity results for a nonlocal elliptic equation. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1998,128(4):697-715. 10.1017/S0308210500021727MathSciNetView ArticleMATHGoogle Scholar
  7. Gomes JM, Sanchez L: On a variational approach to some non-local boundary value problems. Applicable Analysis 2005,84(9):909-925. 10.1080/00036810500048202MathSciNetView ArticleMATHGoogle Scholar
  8. Gaudenzi M, Habets P, Zanolin F: Positive solutions of singular boundary value problems with indefinite weight. Bulletin of the Belgian Mathematical Society. Simon Stevin 2002,9(4):607-619.MathSciNetMATHGoogle Scholar
  9. Jiang D, Gao W, Wan A: A monotone method for constructing extremal solutions to fourth-order periodic boundary value problems. Applied Mathematics and Computation 2002,132(2-3):411-421. 10.1016/S0096-3003(01)00201-6MathSciNetView ArticleMATHGoogle Scholar
  10. Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York; 1992:xvi+777.MATHGoogle Scholar
  11. Smirnov V: Cours de Mathématiques Supérieures. Volume 2. Mir, Moscoú; 1970.Google Scholar
  12. Walter W: Ordinary Differential Equations, Graduate Texts in Mathematics. Volume 182. Springer, New York; 1998:xii+380.Google Scholar
  13. Yang Z: Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Analysis. Theory, Methods & Applications 2005,62(7):1251-1265. 10.1016/j.na.2005.04.030MathSciNetView ArticleMATHGoogle Scholar
  14. Zeidler E: Nonlinear Functional Analysis and Its Applications—I : Fixed-Point Theorems. Springer, New York; 1986:xxi+897.View ArticleMATHGoogle Scholar

Copyright

Advertisement