Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Radial solutions for a nonlocal boundary value problem

  • 686 Accesses

  • 2 Citations


We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term,. We prove the existence of a positive radial solution when grows linearly in, using Krasnoselskiiés fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.



  1. 1.

    Bebernes JW, Lacey AA: Global existence and finite-time blow-up for a class of nonlocal parabolic problems. Advances in Differential Equations 1997,2(6):927-953.

  2. 2.

    Chang N-H, Chipot M: On some mixed boundary value problems with nonlocal diffusion. Advances in Mathematical Sciences and Applications 2004,14(1):1-24.

  3. 3.

    De Coster C, Habets P: The lower and upper solutions method for boundary value problems. In Handbook of Differential Equations. Elsevier, New York; North-Holland, Amsterdam; 2004:69-160.

  4. 4.

    Deimling K: Nonlinear Functional Analysis. Springer, Berlin; 1985:xiv+450.

  5. 5.

    Fijałkowski P, Przeradzki B: On a radial positive solution to a nonlocal elliptic equation. Topological Methods in Nonlinear Analysis 2003,21(2):293-300.

  6. 6.

    Freitas P, Sweers G: Positivity results for a nonlocal elliptic equation. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1998,128(4):697-715. 10.1017/S0308210500021727

  7. 7.

    Gomes JM, Sanchez L: On a variational approach to some non-local boundary value problems. Applicable Analysis 2005,84(9):909-925. 10.1080/00036810500048202

  8. 8.

    Gaudenzi M, Habets P, Zanolin F: Positive solutions of singular boundary value problems with indefinite weight. Bulletin of the Belgian Mathematical Society. Simon Stevin 2002,9(4):607-619.

  9. 9.

    Jiang D, Gao W, Wan A: A monotone method for constructing extremal solutions to fourth-order periodic boundary value problems. Applied Mathematics and Computation 2002,132(2-3):411-421. 10.1016/S0096-3003(01)00201-6

  10. 10.

    Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York; 1992:xvi+777.

  11. 11.

    Smirnov V: Cours de Mathématiques Supérieures. Volume 2. Mir, Moscoú; 1970.

  12. 12.

    Walter W: Ordinary Differential Equations, Graduate Texts in Mathematics. Volume 182. Springer, New York; 1998:xii+380.

  13. 13.

    Yang Z: Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Analysis. Theory, Methods & Applications 2005,62(7):1251-1265. 10.1016/

  14. 14.

    Zeidler E: Nonlinear Functional Analysis and Its Applications—I : Fixed-Point Theorems. Springer, New York; 1986:xxi+897.

Download references

Author information

Correspondence to Luís Sanchez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Enguiça, R., Sanchez, L. Radial solutions for a nonlocal boundary value problem. Bound Value Probl 2006, 32950 (2006).

Download citation


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Point Theorem