Skip to main content

Advertisement

Existence and multiplicity of solutions for a class of superlinear-Laplacian equations

Article metrics

  • 1048 Accesses

  • 11 Citations

Abstract

By a variant version of mountain pass theorem, the existence and multiplicity of solutions are obtained for a class of superlinear-Laplacian equations:. In this paper, we suppose neither satisfies the superquadratic condition in Ambrosetti-Rabinowitz sense nor is nondecreasing with respect to.

[1234567891011121314151617181920]

References

  1. 1.

    Ambrosetti A, Rabinowitz PH: Dual variational methods in critical point theory and applications. Journal of Functional Analysis 1973,14(4):349-381. 10.1016/0022-1236(73)90051-7

  2. 2.

    Brézis H, Nirenberg L: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Communications on Pure and Applied Mathematics 1983,36(4):437-477. 10.1002/cpa.3160360405

  3. 3.

    Costa DG, Magalhães CA: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Analysis 1994,23(11):1401-1412. 10.1016/0362-546X(94)90135-X

  4. 4.

    Costa DG, Miyagaki OH:Nontrivial solutions for perturbations of the-Laplacian on unbounded domains. Journal of Mathematical Analysis and Applications 1995,193(3):737-755. 10.1006/jmaa.1995.1264

  5. 5.

    Goncalves JV, Meira S: On a class of semilinear elliptic problems near critical growth. International Journal of Mathematics and Mathematical Sciences 1998,21(2):321-330. 10.1155/S0161171298000441

  6. 6.

    Jeanjean L:On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1999,129(4):787-809. 10.1017/S0308210500013147

  7. 7.

    Ladyzhenskaya OA, Ural'tseva NN: Linear and Quasilinear Elliptic Equations. Academic Press, New York; 1968:xviii+495.

  8. 8.

    Li G, Zhou H-S:Asymptotically linear Dirichlet problem for the-Laplacian. Nonlinear Analysis, Series A: Theory Methods 2001,43(8):1043-1055. 10.1016/S0362-546X(99)00243-6

  9. 9.

    Liu SB, Li SJ: Infinitely many solutions for a superlinear elliptic equation. Acta Mathematica Sinica 2003,46(4):625-630.

  10. 10.

    Perera K, Schechter M: Semilinear elliptic equations having asymptotic limits at zero and infinity. Abstract and Applied Analysis 1999,4(4):231-242. 10.1155/S1085337599000159

  11. 11.

    Qian A: Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem. Boundary Value Problems 2005, (3):329-335.

  12. 12.

    Rabinowitz PH: Minimax methods and their application to partial differential equations. In Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif, 1983), Math. Sci. Res. Inst. Publ.. Volume 2. Springer, New York; 1984:307-320.

  13. 13.

    Schechter M: A variation of the mountain pass lemma and applications. Journal of the London Mathematical Society. Second Series 1991,44(3):491-502. 10.1112/jlms/s2-44.3.491

  14. 14.

    Schechter M, Zou W: Superlinear problems. Pacific Journal of Mathematics 2004,214(1):145-160. 10.2140/pjm.2004.214.145

  15. 15.

    Szulkin A, Zou W: Homoclinic orbits for asymptotically linear Hamiltonian systems. Journal of Functional Analysis 2001,187(1):25-41. 10.1006/jfan.2001.3798

  16. 16.

    Tolksdorf P: Regularity for a more general class of quasilinear elliptic equations. Journal of Differential Equations 1984,51(1):126-150. 10.1016/0022-0396(84)90105-0

  17. 17.

    Vázquez JL: A strong maximum principle for some quasilinear elliptic equations. Applied Mathematics and Optimization 1984,12(3):191-202.

  18. 18.

    Zhou H-S: Existence of asymptotically linear Dirichlet problem. Nonlinear Analysis. Series A: Theory and Methods 2001,44(7):909-918. 10.1016/S0362-546X(99)00314-4

  19. 19.

    Zhou H-S: An application of a mountain pass theorem. Acta Mathematica Sinica 2002,18(1):27-36. 10.1007/s101140100147

  20. 20.

    Zou W: Variant fountain theorems and their applications. Manuscripta Mathematica 2001,104(3):343-358. 10.1007/s002290170032

Download references

Author information

Correspondence to Juan Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Variant Version