Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Maximum principles for a class of nonlinear second-order elliptic boundary value problems in divergence form

Abstract

For a class of nonlinear elliptic boundary value problems in divergence form, we construct some general elliptic inequalities for appropriate combinations of and, where are the solutions of our problems. From these inequalities, we derive, using Hopf's maximum principles, some maximum principles for the appropriate combinations of and, and we list a few examples of problems to which these maximum principles may be applied.

[12345678910]

References

  1. 1.

    Du Y: Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Vol 1: Maximum Principles and Applications. World Scientific, New Jersey; 2006.

  2. 2.

    Enache C, Philippin GA: Some maximum principles for a class of elliptic boundary value problems. to appear in Mathematical Inequalities & Applications

  3. 3.

    Hopf E: Elementare bemerkung über die lösung partieller differentialgleichungen zweiter ordnung vom elliptischen typus. Sitzungsberichte Preussiche Akademie Wissenschaften 1927, 19: 147-152.

  4. 4.

    Hopf E: A remark on linear elliptic differential equations of second order. Proceedings of the American Mathematical Society 1952, 3: 791-793. 10.1090/S0002-9939-1952-0050126-X

  5. 5.

    Ladyženskaja OA, Ural'ceva NN: Équations aux Dérivées Partielles de Type Elliptique, Monographies Universitaires de Mathématiques, no. 31. Dunod, Paris; 1968:xix+450.

  6. 6.

    Payne LE, Philippin GA: Some maximum principles for nonlinear elliptic equations in divergence form with applications to capillary surfaces and to surfaces of constant mean curvature. Nonlinear Analysis 1979,3(2):193-211. 10.1016/0362-546X(79)90076-2

  7. 7.

    Payne LE, Philippin GA: On maximum principles for a class of nonlinear second-order elliptic equations. Journal of Differential Equations 1980,37(1):39-48. 10.1016/0022-0396(80)90086-8

  8. 8.

    Protter MH, Weinberger HF: Maximum Principles in Differential Equations. Springer, New York; 1975.

  9. 9.

    Pucci P, Serrin J: The strong maximum principle revisited. Journal of Differential Equations 2004,196(1):1-66. 10.1016/j.jde.2003.05.001

  10. 10.

    Sperb RP: Maximum Principles and Their Applications, Mathematics in Science and Engineering. Volume 157. Academic Press, New York; 1981:ix+224.

Download references

Author information

Correspondence to Cristian Enache.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Maximum Principle