- Research Article
- Open Access
- Published:
Maximum principles for a class of nonlinear second-order elliptic boundary value problems in divergence form
Boundary Value Problems volume 2006, Article number: 64543 (2006)
Abstract
For a class of nonlinear elliptic boundary value problems in divergence form, we construct some general elliptic inequalities for appropriate combinations of and
, where
are the solutions of our problems. From these inequalities, we derive, using Hopf's maximum principles, some maximum principles for the appropriate combinations of
and
, and we list a few examples of problems to which these maximum principles may be applied.
References
Du Y: Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Vol 1: Maximum Principles and Applications. World Scientific, New Jersey; 2006.
Enache C, Philippin GA: Some maximum principles for a class of elliptic boundary value problems. to appear in Mathematical Inequalities & Applications
Hopf E: Elementare bemerkung über die lösung partieller differentialgleichungen zweiter ordnung vom elliptischen typus. Sitzungsberichte Preussiche Akademie Wissenschaften 1927, 19: 147-152.
Hopf E: A remark on linear elliptic differential equations of second order. Proceedings of the American Mathematical Society 1952, 3: 791-793. 10.1090/S0002-9939-1952-0050126-X
Ladyženskaja OA, Ural'ceva NN: Équations aux Dérivées Partielles de Type Elliptique, Monographies Universitaires de Mathématiques, no. 31. Dunod, Paris; 1968:xix+450.
Payne LE, Philippin GA: Some maximum principles for nonlinear elliptic equations in divergence form with applications to capillary surfaces and to surfaces of constant mean curvature. Nonlinear Analysis 1979,3(2):193-211. 10.1016/0362-546X(79)90076-2
Payne LE, Philippin GA: On maximum principles for a class of nonlinear second-order elliptic equations. Journal of Differential Equations 1980,37(1):39-48. 10.1016/0022-0396(80)90086-8
Protter MH, Weinberger HF: Maximum Principles in Differential Equations. Springer, New York; 1975.
Pucci P, Serrin J: The strong maximum principle revisited. Journal of Differential Equations 2004,196(1):1-66. 10.1016/j.jde.2003.05.001
Sperb RP: Maximum Principles and Their Applications, Mathematics in Science and Engineering. Volume 157. Academic Press, New York; 1981:ix+224.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Enache, C. Maximum principles for a class of nonlinear second-order elliptic boundary value problems in divergence form. Bound Value Probl 2006, 64543 (2006). https://doi.org/10.1155/BVP/2006/64543
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/BVP/2006/64543
Keywords
- Differential Equation
- Partial Differential Equation
- Ordinary Differential Equation
- Functional Equation
- Maximum Principle