- Research Article
- Open access
- Published:
Asymptotic boundary value problems for evolution inclusions
Boundary Value Problems volume 2006, Article number: 68329 (2006)
Abstract
When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing), but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
References
Andres J, Bader R: Asymptotic boundary value problems in Banach spaces. Journal of Mathematical Analysis and Applications 2002,274(1):437-457. 10.1016/S0022-247X(02)00365-7
Andres J, Gabor G, Górniewicz L: Boundary value problems on infinite intervals. Transactions of the American Mathematical Society 1999,351(12):4861-4903. 10.1090/S0002-9947-99-02297-7
Andres J, Górniewicz L: Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications. Volume 1. Kluwer Academic, Dordrecht; 2003:xvi+761.
Borsuk K: Theory of Retracts, Monografie Matematyczne. Volume 44. Państwowe Wydawnictwo Naukowe, Warsaw; 1967:251.
Evans LC: Partial Differential Equations, Graduate Studies in Mathematics. Volume 19. American Mathematical Society, Rhode Island; 1998:xviii+662.
Furi M, Pera MP: On the fixed point index in locally convex spaces. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1987,106(1-2):161-168. 10.1017/S0308210500018291
Gajewski H, Gröger K, Zacharias K: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien. Volume 38. Akademie, Berlin; 1974:ix+281.
Hu S, Papageorgiou NS: Handbook of Multivalued Analysis. Vol. I. Theory, Mathematics and Its Applications. Volume 419. Kluwer Academic, Dordrecht; 1997:xvi+964.
Margheri A, Zecca P: Solution sets and boundary value problems in Banach spaces. Topological Methods in Nonlinear Analysis 1993,2(1):179-188.
Schaefer HH: Topological Vector Spaces. The Macmillan, New York; Collier-Macmillan, London; 1966:ix+294.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Fürst, T. Asymptotic boundary value problems for evolution inclusions. Bound Value Probl 2006, 68329 (2006). https://doi.org/10.1155/BVP/2006/68329
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/BVP/2006/68329