Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Research Article | Open | Published:

Asymptotic boundary value problems for evolution inclusions


When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing), but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.



  1. 1.

    Andres J, Bader R: Asymptotic boundary value problems in Banach spaces. Journal of Mathematical Analysis and Applications 2002,274(1):437-457. 10.1016/S0022-247X(02)00365-7

  2. 2.

    Andres J, Gabor G, Górniewicz L: Boundary value problems on infinite intervals. Transactions of the American Mathematical Society 1999,351(12):4861-4903. 10.1090/S0002-9947-99-02297-7

  3. 3.

    Andres J, Górniewicz L: Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications. Volume 1. Kluwer Academic, Dordrecht; 2003:xvi+761.

  4. 4.

    Borsuk K: Theory of Retracts, Monografie Matematyczne. Volume 44. Państwowe Wydawnictwo Naukowe, Warsaw; 1967:251.

  5. 5.

    Evans LC: Partial Differential Equations, Graduate Studies in Mathematics. Volume 19. American Mathematical Society, Rhode Island; 1998:xviii+662.

  6. 6.

    Furi M, Pera MP: On the fixed point index in locally convex spaces. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1987,106(1-2):161-168. 10.1017/S0308210500018291

  7. 7.

    Gajewski H, Gröger K, Zacharias K: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien. Volume 38. Akademie, Berlin; 1974:ix+281.

  8. 8.

    Hu S, Papageorgiou NS: Handbook of Multivalued Analysis. Vol. I. Theory, Mathematics and Its Applications. Volume 419. Kluwer Academic, Dordrecht; 1997:xvi+964.

  9. 9.

    Margheri A, Zecca P: Solution sets and boundary value problems in Banach spaces. Topological Methods in Nonlinear Analysis 1993,2(1):179-188.

  10. 10.

    Schaefer HH: Topological Vector Spaces. The Macmillan, New York; Collier-Macmillan, London; 1966:ix+294.

Download references

Author information

Correspondence to Tomáš Fürst.

Rights and permissions

Reprints and Permissions

About this article


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Equation
  • Function Space