# Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity

## Abstract

In this paper, we investigate the Cauchy problem for the incompressible magneto-micropolar fluid equations with partial viscosity in n(n = 2, 3). We obtain a Beale-Kato-Majda type blow-up criterion of smooth solutions.

MSC (2010): 76D03; 35Q35.

## 1 Introduction

The incompressible magneto-micropolar fluid equations in n(n = 2, 3) takes the following form

$\left\{\begin{array}{c}{\partial }_{t}u-\left(\mu +\chi \right)\Delta u+u\cdot \nabla u-b\cdot \nabla b+\nabla \left(p+\frac{1}{2}|b{|}^{2}\right)-\chi \nabla ×v=0,\\ {\partial }_{t}v-\gamma \Delta v-\kappa \nabla \mathsf{\text{div}}v+2\chi v+u\cdot \nabla v-\chi \nabla ×u=0,\\ {\partial }_{t}b-\nu \Delta b+u\cdot \nabla b-b\cdot \nabla u=0,\\ \nabla \cdot u=0,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\nabla \cdot b=0,\end{array}\right\$
(1.1)

where u(t, x), v(t, x), b(t, x) and p(t, x) denote the velocity of the fluid, the micro-rotational velocity, magnetic field and hydrostatic pressure, respectively. μ, χ, γ, κ and ν are constants associated with properties of the material: μ is the kinematic viscosity, χ is the vortex viscosity, γ and κ are spin viscosities, and $\frac{1}{\nu }$ is the magnetic Reynold. The incompressible magneto-micropolar fluid equations (1.1) has been studied extensively (see ). Rojas-Medar  established the local in time existence and uniqueness of strong solutions by the spectral Galerkin method. Global existence of strong solution for small initial data was obtained in . Rojas-Medar and Boldrini  proved the existence of weak solutions by the Galerkin method, and in 2D case, also proved the uniqueness of the weak solutions. Wang et al.  obtained a Beale-Kato-Majda type blow-up criterion for smooth solution (u, v, b) to the magneto-micropolar fluid equations with partial viscosity that relies on the vorticity of velocity × u only (see also ). For regularity results, refer to Yuan  and Gala .

If b = 0, (1.1) reduces to micropolar fluid equations. The micropolar fluid equations was first proposed by Eringen . It is a type of fluids which exhibits the micro-rotational effects and micro-rotational inertia, and can be viewed as a non-Newtonian fluid. Physically, micropolar fluid may represent fluids that consisting of rigid, randomly oriented (or spherical particles) suspended in a viscous medium, where the deformation of fluid particles is ignored. It can describe many phenomena appeared in a large number of complex fluids such as the suspensions, animal blood, liquid crystals which cannot be characterized appropriately by the Navier-Stokes equations, and that it is important to the scientists working with the hydrodynamic-fluid problems and phenomena. For more background, we refer to  and references therein. The existences of weak and strong solutions for micropolar fluid equations were treated by Galdi and Rionero  and Yamaguchi , respectively. The global regularity issue has been thoroughly investigated for the 3D micropolar fluid equations and many important regularity criteria have been established (see ). The convergence of weak solutions of the micropolar fluids in bounded domains of n was investigated (see ). When the viscosities tend to zero, in the limit, a fluid governed by an Euler-like system was found.

If both v = 0 and χ = 0, then Equations 1.1 reduces to be the magneto-hydrodynamic (MHD) equations. The local well-posedness of the Cauchy problem for the incompressible MHD equations in the usual Sobolev spaces Hs(3) is established in  for any given initial data that belongs to Hs(3), s ≥ 3. But whether this unique local solution can exist globally is a challenge open problem in the mathematical fluid mechanics. There are numerous important progresses on the fundamental issue of the regularity for the weak solution to (1.1), (1.2) (see ). In this paper, we consider the magneto-micropolar fluid equations (1.1) with partial viscosity, i.e., μ = χ = 0. Without loss of generality, we take γ = κ = ν = 1. The corresponding magneto-micropolar fluid equations thus reads

$\left\{\begin{array}{c}\hfill {\partial }_{t}u+u\cdot \nabla u-b\cdot \nabla b+\nabla \left(p+\frac{1}{2}|b{|}^{2}\right)=0,\hfill \\ \hfill {\partial }_{t}v-\Delta v-\nabla \mathsf{\text{div}}v+u\cdot \nabla v=0,\hfill \\ \hfill {\partial }_{t}b-\Delta b+u\cdot \nabla b-b\cdot \nabla u=0,\hfill \\ \hfill \nabla \cdot u=0,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\nabla \cdot b=0.\hfill \end{array}\right\$
(1.2)

We obtain a blow-up criterion of smooth solutions to (1.2), which improves our previous result (see ).

In the absence of global well-posedness, the development of blow-up/non-blow-up theory is of major importance for both theoretical and practical purposes. For incompressible Euler and Navier-Stokes equations, the well-known Beale-Kato-Majda's criterion  says that any solution u is smooth up to time T under the assumption that ${\int }_{0}^{T}\parallel \nabla ×u\left(t\right){\parallel }_{{L}^{\infty }}dt<\infty$. Beale-Kato-Majda's criterion is slightly improved by Kozono et al.  under the assumption ${\int }_{0}^{T}\parallel \nabla ×u\left(t\right){\parallel }_{BMO}dt<\infty$. In this paper, we obtain a Beale-Kato-Majda type blow-up criterion of smooth solutions to Cauchy problem for the magneto-micropolar fluid equations (1.2).

Now, we state our results as follows.

Theorem 1.1 Assume that u0, v0, b0 Hm(n)(n = 2, 3), m ≥ 3 with · u0 = 0, · b0 = 0. Let (u, v, b) be a smooth solution to Equations 1.2 with initial data u(0, x) = u0(x), v(0, x) = v0(x), b(0, x) = b0(x) for 0 ≤ t < T . If u satisfies

${\int }_{0}^{T}\parallel \nabla ×u\left(t\right){\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}dt<\infty ,$
(1.3)

then the solution (u, v, b) can be extended beyond t = T.

We have the following corollary immediately.

Corollary 1.1 Assume that u0, v0, b0 Hm(n)(n = 2, 3), m ≥ 3 with · u0 = 0, · b0 = 0. Let (u, v, b) be a smooth solution to Equations 1.2 with initial data u(0, x) = u0(x), v(0, x) = v0(x), b(0, x) = b0(x) for 0 ≤ t < T . Suppose that T is the maximal existence time, then

${\int }_{0}^{T}\parallel \nabla ×u\left(t\right){\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}dt=\infty .$
(1.4)

The plan of the paper is arranged as follows. We first state some preliminary on functional settings and some important inequalities in Section 2 and then prove the blow-up criterion of smooth solutions to the magneto-micropolar fluid equations (1.2) in Section 3.

## 2 Preliminaries

Let $\mathcal{S}\left({ℝ}^{n}\right)$ be the Schwartz class of rapidly decreasing functions. Given $f\in \mathcal{S}\left({ℝ}^{n}\right)$, its Fourier transform $ℱf=\stackrel{^}{f}$ is defined by

$\stackrel{^}{f}\left(\xi \right)={\int }_{{ℝ}^{n}}{e}^{-ix\cdot \xi }f\left(x\right)dx$

and for any given $g\in \mathcal{S}\left({ℝ}^{n}\right)$, its inverse Fourier transform ${ℱ}^{-1}g=\stackrel{⌣}{g}$ is defined by

$\stackrel{⌣}{g}\left(x\right)={\int }_{{ℝ}^{n}}{e}^{ix\cdot \xi }g\left(\xi \right)d\xi .$

In what follows, we recall the Littlewood-Paley decomposition. Choose a non-negative radial functions $\varphi \in \mathcal{S}\left({ℝ}^{n}\right)$, supported in $\mathcal{C}=\left\{\xi \in {ℝ}^{n}:\frac{3}{4}\le |\xi |\le \frac{8}{3}\right\}$ such that

$\sum _{k=-\infty }^{\infty }\varphi \left({2}^{-k}\xi \right)=1,\forall \xi \in {ℝ}^{n}\\left\{0\right\}.$

The frequency localization operator is defined by

${\Delta }_{k}f={\int }_{{ℝ}^{n}}\stackrel{⌣}{\varphi }\left(y\right)f\left(x-{2}^{-k}y\right)dy.$

Next, we recall the definition of homogeneous function spaces (see ). For (p, q) [1, ∞]2 and s , the homogeneous Besov space ${Ḃ}_{p,q}^{s}$ is defined as the set of f up to polynomials such that

$\parallel f{\parallel }_{{Ḃ}_{p,q}^{s}}\triangleq {∥{2}^{ks}\parallel {\Delta }_{k}f{\parallel }_{{L}^{p}}∥}_{{l}^{q}\left(ℤ\right)}<\infty .$

In what follows, we shall make continuous use of Bernstein inequalities, which comes from .

Lemma 2.1 For any s , 1 ≤ pq ≤ ∞ and f Lp(n), then the following inequalities

$c{2}^{km}\parallel {\Delta }_{k}f{\parallel }_{{L}^{p}}\le \parallel {\nabla }^{m}{\Delta }_{k}f{\parallel }_{{L}^{p}}\le C{2}^{km}\parallel {\Delta }_{k}f{\parallel }_{{L}^{p}}$
(2.1)

and

$\parallel {\Delta }_{k}f{\parallel }_{{L}^{q}}\le C{2}^{n\left(\frac{1}{p}-\frac{1}{q}\right)k}\parallel {\Delta }_{k}f{\parallel }_{{L}^{p}}$
(2.2)

hold, where c and C are positive constants independent of f and k.

The following inequality is well-known Gagliardo-Nirenberg inequality.

Lemma 2.2 Let j, m be any integers satisfying 0 ≤ j < m, and let 1 ≤ q, r ≤ ∞, and $p\in ℝ,\frac{j}{m}\le \theta \le 1$ such that

$\frac{1}{p}-\frac{j}{n}=\theta \left(\frac{1}{r}-\frac{m}{n}\right)+\left(1-\theta \right)\frac{1}{q}.$

Then for all f Lq(n) ∩Wm,r(n), there is a positive constant C depending only on n, m, j, q, r, θ such that the following inequality holds:

$\parallel {\nabla }^{j}f{\parallel }_{{L}^{p}}\le C\parallel f{\parallel }_{{L}^{q}}^{1-\theta }\parallel {\nabla }^{m}f{\parallel }_{{L}^{r}}^{\theta }$
(2.3)

with the following exception: if 1 < r < 1 and $m-j-\frac{n}{r}$ is a nonnegative integer, then (2.3) holds only for a satisfying $\frac{j}{m}\le \theta <1$.

The following lemma comes from .

Lemma 2.3 Assume that 1 < p < ∞. For f, g Wm,p, and 1 < q1, q2 ≤ ∞, 1 < r1, r2 < 1, we have

$\parallel {\nabla }^{\alpha }\left(fg\right)-f{\nabla }^{\alpha }g{\parallel }_{{L}^{p}}\le C\left(\parallel \nabla f{\parallel }_{{L}^{{q}_{1}}}\parallel {\nabla }^{\alpha -1}g{\parallel }_{{L}^{{r}_{1}}}+\parallel g{\parallel }_{{L}^{{q}_{2}}}\parallel {\nabla }^{\alpha }f{\parallel }_{{L}^{{r}_{2}}}\right),$
(2.4)

where 1 ≤ αm and $\frac{1}{p}=\frac{1}{{q}_{1}}+\frac{1}{{r}_{1}}=\frac{1}{{q}_{2}}+\frac{1}{{r}_{2}}$.

Lemma 2.4 There exists a uniform positive constant C, such that

$\parallel \nabla f{\parallel }_{{L}^{\infty }}\le C\left(1+\parallel f{\parallel }_{{L}^{2}}+\parallel \nabla ×f{\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}ln\left(e+\parallel f{\parallel }_{{H}^{3}}\right)\right).$
(2.5)

holds for all vectors f H3(n)(n = 2, 3) with · f = 0.

Proof. The proof can be founded in . For the convenience of the readers, the proof will be also sketched here. It follows from Littlewood-Paley composition that

$\nabla f=\sum _{k=-\infty }^{0}{\Delta }_{k}\nabla f+\sum _{k=1}^{A}{\Delta }_{k}\nabla f+\sum _{k=A+1}^{\infty }{\Delta }_{k}\nabla f.$
(2.6)

Using (2.1), ( 2.2) and (2.6), we obtain

$\begin{array}{lll}\hfill \parallel \nabla f{\parallel }_{{L}^{\infty }}& \le \sum _{k=-\infty }^{0}\parallel {\Delta }_{k}\nabla f{\parallel }_{{L}^{\infty }}+\parallel \sum _{k=1}^{A}{\Delta }_{k}\nabla f{\parallel }_{{L}^{\infty }}+\sum _{k=A+1}^{\infty }\parallel {\Delta }_{k}\nabla f{\parallel }_{{L}^{\infty }}\phantom{\rule{2em}{0ex}}& \hfill \text{(1)}\\ \le C\sum _{k=-\infty }^{0}{2}^{\left(1+\frac{n}{2}\right)k}\parallel {\Delta }_{k}f{\parallel }_{{L}^{2}}+A\underset{1\le k\le A}{max}\parallel {\Delta }_{k}\nabla f{\parallel }_{{L}^{\infty }}+\phantom{\rule{2em}{0ex}}& \hfill \text{(2)}\\ \phantom{\rule{1em}{0ex}}\sum _{k=A+1}^{\infty }{2}^{-\left(2-\frac{n}{2}\right)k}\parallel {\Delta }_{k}{\nabla }^{3}f{\parallel }_{{L}^{2}}\phantom{\rule{2em}{0ex}}& \hfill \text{(3)}\\ \le C\left(\parallel f{\parallel }_{{L}^{2}}+A\parallel \nabla f{\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}+{2}^{-\left(2-\frac{n}{2}\right)A}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}\right).\phantom{\rule{2em}{0ex}}& \hfill \text{(4)}\\ \hfill \text{(5)}\end{array}$
(2.7)

Taking

$A=\left[\frac{1}{\left(2-\frac{n}{2}\right)ln2}ln\left(e+\parallel f{\parallel }_{{H}^{3}}\right)\right]+1.$
(2.8)

It follows from (2.7), (2.8) and Calderon-Zygmand theory that (2.5) holds. Thus, we have completed the proof of lemma. □

In order to prove Theorem 1.1, we need the following interpolation inequalities in two and three space dimensions.

Lemma 2.5 In three space dimensions, the following inequalities

$\left\{\begin{array}{c}\hfill \parallel \nabla f{\parallel }_{{L}^{2}}\le C\parallel f{\parallel }_{{L}^{2}}^{\frac{2}{3}}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}^{\frac{1}{3}}.\hfill \\ \hfill \parallel f{\parallel }_{{L}^{\infty }}\le C\parallel f{\parallel }_{{L}^{2}}^{\frac{1}{4}}\parallel {\nabla }^{2}f{\parallel }_{{L}^{2}}^{\frac{3}{4}}.\hfill \\ \hfill \parallel f{\parallel }_{{L}^{4}}\le C\parallel f{\parallel }_{{L}^{2}}^{\frac{3}{4}}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}^{\frac{1}{4}}\hfill \end{array}\right\$
(2.9)

hold, and in two space dimensions, the following inequalities

$\left\{\begin{array}{c}\hfill \parallel \nabla f{\parallel }_{{L}^{2}}\le C\parallel f{\parallel }_{{L}^{2}}^{\frac{2}{3}}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}^{\frac{1}{3}}.\hfill \\ \hfill \parallel f{\parallel }_{{L}^{\infty }}\le C\parallel f{\parallel }_{{L}^{2}}^{\frac{1}{2}}\parallel {\nabla }^{2}f{\parallel }_{{L}^{2}}^{\frac{1}{2}}.\hfill \\ \hfill \parallel f{\parallel }_{{L}^{4}}\le C\parallel f{\parallel }_{{L}^{2}}^{\frac{5}{6}}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}^{\frac{1}{6}}\hfill \end{array}\right\$
(2.10)

hold.

Proof. (2.9) and (2.10) are of course well known. In fact, we can obtain them by Sobolev embedding and the scaling techniques. In what follows, we only prove the last inequality in (2.9) and (2.10). Sobolev embedding implies that H3(n), L4(n) for n = 2, 3. Consequently, we get

$\parallel f{\parallel }_{{L}^{4}}\le C\left(\parallel f{\parallel }_{{L}^{2}}+\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}\right).$
(2.11)

For any given 0 ≠ f H3(n) and δ > 0, let

${f}_{\delta }\left(x\right)=f\left(\delta x\right).$
(2.12)

By (2.11) and (2.12), we obtain

$\parallel {f}_{\delta }{\parallel }_{{L}^{4}}\le C\left(\parallel {f}_{\delta }{\parallel }_{{L}^{2}}+\parallel {\nabla }^{3}{f}_{\delta }{\parallel }_{{L}^{2}}\right),$
(2.13)

which is equivalent to

$\parallel f{\parallel }_{{L}^{4}}\le C\left({\delta }^{-\frac{n}{4}}\parallel f{\parallel }_{{L}^{2}}+{\delta }^{3-\frac{n}{4}}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}\right).$
(2.14)

Taking $\delta =\parallel f{\parallel }_{{L}^{2}}^{\frac{1}{3}}\parallel {\nabla }^{3}f{\parallel }_{{L}^{2}}^{-\frac{1}{3}}$ and n = 3 and n = 2, respectively. From (2.14), we immediately get the last inequality in (2.9) and (2.10). Thus, we have completed the proof of Lemma 2.5. □

## 3 Proof of main results

Proof of Theorem 1.1. Adding the inner product of u with the first equation of (1.2), of v with the second equation of (1.2) and of b the third equation of (1.2), then using integration by parts, we get

$\frac{1}{2}\frac{d}{dt}\left(\parallel u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel b\left(t\right){\parallel }_{{L}^{2}}^{2}\right)+\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \mathsf{\text{div}}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}=0,$
(3.1)

where we have used ·· u = 0 and · b = 0.

Integrating with respect to t, we have

$\begin{array}{c}\parallel u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel b\left(t\right){\parallel }_{{L}^{2}}^{2}+2{\int }_{0}^{t}\parallel \nabla v\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau +2{\int }_{0}^{t}\parallel \mathsf{\text{div}}v\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau +\\ 2{\int }_{0}^{t}\parallel \nabla b\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau =\parallel {u}_{0}{\parallel }_{{L}^{2}}^{2}+\parallel {v}_{0}{\parallel }_{{L}^{2}}^{2}+\parallel {b}_{0}{\parallel }_{{L}^{2}}^{2}.\end{array}$
(3.2)

Applying to (1.2) and taking the L2 inner product of the resulting equation with (u, v, b), with help of integration by parts, we have

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\frac{1}{2}\frac{d}{dt}\left(\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}\right)+\parallel {\nabla }^{2}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \mathsf{\text{div}}\nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{2}b\left(t\right){\parallel }_{{L}^{2}}^{2}\\ =-{\int }_{{ℝ}^{n}}\nabla \left(u\cdot \nabla u\right)\nabla udx+{\int }_{{ℝ}^{n}}\nabla \left(b\cdot \nabla b\right)\nabla udx-{\int }_{{ℝ}^{n}}\nabla \left(u\cdot \nabla v\right)\nabla vdx\\ \phantom{\rule{1em}{0ex}}-{\int }_{{ℝ}^{n}}\nabla \left(u\cdot \nabla b\right)\nabla bdx+{\int }_{{ℝ}^{n}}\nabla \left(b\cdot \nabla u\right)\nabla bdx.\end{array}$
(3.3)

By (3.3) and · u = 0, · b = 0, we deduce that

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\frac{1}{2}\frac{d}{dt}\left(\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}\right)+\parallel {\nabla }^{2}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \mathsf{\text{div}}\nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{2}b\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le 3\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}\right).\end{array}$
(3.4)

Using Gronwall inequality, we get

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}+2{\int }_{{t}_{0}}^{t}\parallel {\nabla }^{2}v\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau +\\ \phantom{\rule{1em}{0ex}}2{\int }_{{t}_{0}}^{t}\parallel \mathsf{\text{div}}\nabla v\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau +2{\int }_{{t}_{0}}^{t}\parallel {\nabla }^{2}b\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau \\ \le \left(\parallel \nabla u\left({t}_{0}\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left({t}_{0}\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left({t}_{0}\right){\parallel }_{{L}^{2}}^{2}\right)exp\left\{C{\int }_{{t}_{0}}^{t}\parallel \nabla u\left(\tau \right){\parallel }_{{L}^{\infty }}d\tau \right\}.\end{array}$
(3.5)

Owing to (1.3), we know that for any small constant ε > 0, there exists T* < T such that

${\int }_{{T}_{\star }}^{T}\parallel \nabla ×u\left(t\right){\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}dt\le \epsilon .$
(3.6)

Let

$\Theta \left(t\right)=\underset{{T}_{\star }\le \tau \le t}{sup}\left(\parallel {\nabla }^{3}u\left(\tau \right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}v\left(\tau \right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}b\left(\tau \right){\parallel }_{{L}^{2}}^{2}\right),\phantom{\rule{2.77695pt}{0ex}}{T}_{\star }\le t
(3.7)

It follows from (3.5), (3.6), (3.7) and Lemma 2.4 that

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}+2{\int }_{{T}_{\star }}^{t}\parallel {\nabla }^{2}v\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau +\\ \phantom{\rule{1em}{0ex}}2{\int }_{{T}_{\star }}^{t}\parallel \mathsf{\text{div}}\nabla v\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau +2{\int }_{{T}_{\star }}^{t}\parallel {\nabla }^{2}b\left(\tau \right){\parallel }_{{L}^{2}}^{2}d\tau \\ \le {C}_{1}exp\left\{{C}_{0}{\int }_{{T}_{\star }}^{t}\parallel \nabla ×u{\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}ln\left(e+\parallel u{\parallel }_{{H}^{3}}\right)d\tau \right\}\\ \le {C}_{1}exp\left\{{C}_{0}\epsilon ln\left(e+\Theta \left(t\right)\right)\right\}\\ \le {C}_{1}{\left(e+\Theta \left(t\right)\right)}^{{C}_{0}\epsilon },\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}{T}_{\star }\le t
(3.8)

where C1 depends on $\parallel \nabla u\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}$, while C0 is an absolute positive constant.

Applying m to the first equation of (1.2), then taking L2 inner product of the resulting equation with mu and using integration by parts, we have

$\frac{1}{2}\frac{d}{dt}\parallel {\nabla }^{m}u\left(t\right){\parallel }_{{L}^{2}}^{2}=-{\int }_{{ℝ}^{n}}{\nabla }^{m}\left(u\cdot \nabla u\right){\nabla }^{m}udx+{\int }_{{ℝ}^{n}}{\nabla }^{m}\left(b\cdot \nabla b\right){\nabla }^{m}udx.$
(3.9)

Likewise, we obtain

$\frac{1}{2}\frac{d}{dt}\parallel {\nabla }^{m}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{m}\nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \mathsf{\text{div}}{\nabla }^{m}v\left(t\right){\parallel }_{{L}^{2}}^{2}=-{\int }_{{ℝ}^{n}}{\nabla }^{m}\left(u\cdot \nabla v\right){\nabla }^{m}vdx.$
(3.10)

and

$\frac{1}{2}\frac{d}{dt}\parallel {\nabla }^{m}b\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{m}\nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}=-{\int }_{{ℝ}^{n}}{\nabla }^{m}\left(u\cdot \nabla b\right){\nabla }^{m}bdx+{\int }_{{ℝ}^{n}}{\nabla }^{m}\left(b\cdot \nabla u\right){\nabla }^{m}bdx.$
(3.11)

It follows (3.9), (3.10), (3.11), · u = 0, · b = 0 and integration by parts that

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\frac{1}{2}\frac{d}{dt}\left(\parallel {\nabla }^{m}u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{m}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{m}b\left(t\right){\parallel }_{{L}^{2}}^{2}\right)+\\ \phantom{\rule{1em}{0ex}}\parallel {\nabla }^{m}\nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel \mathsf{\text{div}}{\nabla }^{m}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{m}\nabla b\left(t\right){\parallel }_{{L}^{2}}^{2}\\ =-{\int }_{{ℝ}^{n}}\left[{\nabla }^{m}\left(u\cdot \nabla u\right)-u\cdot \nabla {\nabla }^{m}u\right]{\nabla }^{m}udx+{\int }_{{ℝ}^{n}}\left[{\nabla }^{m}\left(b\cdot \nabla b\right)-b\cdot \nabla {\nabla }^{m}b\right]{\nabla }^{m}udx\\ \phantom{\rule{1em}{0ex}}-{\int }_{{ℝ}^{n}}\left[{\nabla }^{m}\left(u\cdot \nabla v\right)-u\cdot \nabla {\nabla }^{m}v\right]{\nabla }^{m}vdx-{\int }_{{ℝ}^{n}}\left[{\nabla }^{m}\left(u\cdot \nabla b\right)-u\cdot \nabla {\nabla }^{m}b\right]{\nabla }^{m}bdx\\ \phantom{\rule{1em}{0ex}}+{\int }_{{ℝ}^{n}}\left[{\nabla }^{m}\left(b\cdot \nabla u\right)-b\cdot \nabla {\nabla }^{m}u\right]{\nabla }^{m}bdx.\end{array}$
(3.12)

In what follows, for simplicity, we will set m = 3.

With help of Hölder inequality and Lemma 2.3, we derive

$|-{\int }_{{ℝ}^{n}}\left[{\nabla }^{3}\left(u\cdot \nabla u\right)-u\cdot \nabla {\nabla }^{3}u\right]{\nabla }^{3}udx|\le C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{2}.$
(3.13)

Using integration by parts and Hölder inequality, we get

$\begin{array}{c}\phantom{\rule{1em}{0ex}}|-{\int }_{{ℝ}^{n}}\left[{\nabla }^{3}\left(u\cdot \nabla v\right)-u\cdot \nabla {\nabla }^{3}v\right]{\nabla }^{3}vdx|\\ \le 7\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel {\nabla }^{3}v\left(t\right){\parallel }_{{L}^{2}}^{2}+4\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel {\nabla }^{2}v\left(t\right){\parallel }_{{L}^{2}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}+\\ \phantom{\rule{1em}{0ex}}||{\nabla }^{2}u\left(t\right){\parallel }_{{L}^{4}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{4}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}.\end{array}$
(3.14)

Thanks to Lemma 2.5, Young inequality and (3.8), we get

$\begin{array}{c}\phantom{\rule{1em}{0ex}}4\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel {\nabla }^{2}v\left(t\right){\parallel }_{{L}^{2}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}\\ \le C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{\frac{2}{3}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{\frac{4}{3}}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}^{3}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{\frac{1}{2}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{3}{2}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}{\left(e+\Theta \left(t\right)\right)}^{\frac{5}{4}{C}_{0}\epsilon }{\Theta }^{\frac{3}{4}}\left(t\right)\end{array}$

in 3D and

$\begin{array}{c}\phantom{\rule{1em}{0ex}}4\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel {\nabla }^{2}v\left(t\right){\parallel }_{{L}^{2}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}\\ \le C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{\frac{2}{.3}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{\frac{4}{.3}}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}^{3}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}{\left(e+\Theta \left(t\right)\right)}^{\frac{2}{.2}{C}_{0}\epsilon }{\Theta }^{\frac{1}{.2}}\left(t\right)\end{array}$

in 2D.

It follows from Lemmas 2.2, 2.5, Young inequality and (3.8) that

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\parallel {\nabla }^{2}u\left(t\right){\parallel }_{{L}^{4}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{4}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}\\ \le C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}^{\frac{1}{2}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{1}{2}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{\frac{3}{4}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{\frac{5}{4}}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}^{\frac{4}{3}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{4}{3}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{\frac{1}{12}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{19}{12}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}{\left(e+\Theta \left(t\right)\right)}^{\frac{25}{24}{C}_{0}\epsilon }{\Theta }^{\frac{19}{24}}\left(t\right)\end{array}$

in 3D and

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\parallel {\nabla }^{2}u\left(t\right){\parallel }_{{L}^{4}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{4}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}\\ \le C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}^{\frac{1}{2}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{1}{2}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{\frac{5}{6}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{\frac{7}{6}}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}^{\frac{6}{5}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{6}{5}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel \nabla u\left(t\right){\parallel }_{{L}^{2}}^{\frac{1}{10}}\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{\frac{13}{10}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}{\left(e+\Theta \left(t\right)\right)}^{\frac{21}{20}{C}_{0}\epsilon }{\Theta }^{\frac{13}{20}}\left(t\right)\end{array}$

in 2D.

Consequently, we get

$\begin{array}{c}\phantom{\rule{1em}{0ex}}4\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\parallel {\nabla }^{2}v\left(t\right){\parallel }_{{L}^{2}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right)\end{array}$
(3.15)

and

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\parallel {\nabla }^{2}u\left(t\right){\parallel }_{{L}^{4}}\parallel \nabla v\left(t\right){\parallel }_{{L}^{4}}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}\\ \le \frac{1}{4}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right)\end{array}$
(3.16)

provided that

$\epsilon \le \frac{1}{5{C}_{0}}.$

It follows from (3.14), (3.15) and (3.16) that

$\begin{array}{c}\phantom{\rule{1em}{0ex}}|-{\int }_{{ℝ}^{n}}\left[{\nabla }^{3}\left(u\cdot \nabla v\right)-u\cdot \nabla {\nabla }^{3}v\right]{\nabla }^{3}vdx|\\ \le \frac{1}{2}\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right).\end{array}$
(3.17)

Likewise, we have

$\begin{array}{c}\phantom{\rule{1em}{0ex}}|-{\int }_{{ℝ}^{n}}\left[{\nabla }^{3}\left(u\cdot \nabla b\right)-u\cdot \nabla {\nabla }^{3}b\right]{\nabla }^{3}bdx|\\ \le \frac{1}{6}\parallel {\nabla }^{4}b\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right).\end{array}$
(3.18)
$\begin{array}{c}\phantom{\rule{1em}{0ex}}|{\int }_{{ℝ}^{n}}\left[{\nabla }^{3}\left(b\cdot \nabla b\right)-b\cdot \nabla {\nabla }^{3}b\right]{\nabla }^{3}udx|\\ \le \frac{1}{6}\parallel {\nabla }^{4}b\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right)\end{array}$
(3.19)

and

$\begin{array}{c}\phantom{\rule{1em}{0ex}}|{\int }_{{ℝ}^{n}}\left[{\nabla }^{3}\left(b\cdot \nabla u\right)-b\cdot \nabla {\nabla }^{3}u\right]{\nabla }^{3}bdx|\\ \le \frac{1}{6}\parallel {\nabla }^{4}b\left(t\right){\parallel }_{{L}^{2}}^{2}+C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right)\end{array}$
(3.20)

Collecting (3.12), (3.13), (3.17), (3.18), (3.19) and (3.20) yields

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\frac{d}{dt}\left(\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}b\left(t\right){\parallel }_{{L}^{2}}^{2}\right)+\parallel {\nabla }^{4}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\\ \phantom{\rule{1em}{0ex}}\parallel \mathsf{\text{div}}{\nabla }^{3}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{4}b\left(t\right){\parallel }_{{L}^{2}}^{2}\\ \le C\parallel \nabla u\left(t\right){\parallel }_{{L}^{\infty }}\left(e+\Theta \left(t\right)\right)\end{array}$
(3.21)

for all T*t < T.

Integrating (3.21) with respect to time from T* to τ and using Lemma 2.4, we have

$\begin{array}{c}\phantom{\rule{1em}{0ex}}e+\parallel {\nabla }^{3}u\left(\tau \right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}v\left(\tau \right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}b\left(\tau \right){\parallel }_{{L}^{2}}^{2}\\ \le e+\parallel {\nabla }^{3}u\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}v\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}b\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\\ \phantom{\rule{1em}{0ex}}{C}_{2}{\int }_{{T}_{\star }}^{\tau }\left[1+\parallel u{\parallel }_{{L}^{2}}+\parallel \nabla ×u\left(s\right){\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}ln\left(e+\Theta \left(s\right)\right)\right]\left(e+\Theta \left(s\right)\right)ds.\end{array}$
(3.22)

Owing to (3.22), we get

$\begin{array}{lll}\hfill e+A\left(t\right)\le & e+\parallel {\nabla }^{3}u\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}v\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}b\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\phantom{\rule{2em}{0ex}}& \hfill \text{(1)}\\ {C}_{2}{\int }_{{T}_{\star }}^{t}\left[1+\parallel u{\parallel }_{{L}^{2}}+\parallel \nabla ×u\left(\tau \right){\parallel }_{{Ḃ}_{\infty ,\infty }^{0}}ln\left(e+\Theta \left(\tau \right)\right)\right]\left(e+\Theta \left(\tau \right)\right)d\tau .\phantom{\rule{2em}{0ex}}& \hfill \text{(2)}\\ \hfill \text{(3)}\end{array}$
(3.23)

For all T*t < T, with help of Gronwall inequality and (3.23), we have

$e+\parallel {\nabla }^{3}u\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}v\left(t\right){\parallel }_{{L}^{2}}^{2}+\parallel {\nabla }^{3}b\left(t\right){\parallel }_{{L}^{2}}^{2}\le C,$
(3.24)

where C depends on $\parallel \nabla u\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla v\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}+\parallel \nabla b\left({T}_{\star }\right){\parallel }_{{L}^{2}}^{2}$.

Noting that (3.2) and the right-hand side of (3.24) is independent of t for T*t < T , we know that (u(T, ·), v(T, ·), b(T, ·)) H3(n). Thus, Theorem 1.1 is proved.

## References

1. Gala S: Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space. Nonlinear Differ Equ Appl 2010, 17: 181-194. 10.1007/s00030-009-0047-4

2. Wang Y, Hu L, Wang Y: A Beale-Kato Majda criterion for magneto-micropolar fluid equations with partial viscosity. Bound Value Prob 2011, 2011: 14. Article ID 128614 10.1186/1687-2770-2011-14

3. Ortega-Torres E, Rojas-Medar M: On the uniqueness and regularity of the weak solution for magneto-micropolar fluid equations. Revista de Matemáticas Aplicadas 1996, 17: 75-90.

4. Ortega-Torres E, Rojas-Medar M: Magneto-micropolar fluid motion: global existence of strong solutions. Abstract Appl Anal 1999, 4: 109-125. 10.1155/S1085337599000287

5. Rojas-Medar M: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Mathematische Nachrichten 1997, 188: 301-319. 10.1002/mana.19971880116

6. Rojas-Medar M, Boldrini J: Magneto-micropolar fluid motion: existence of weak solutions. Rev Mat Complut 1998, 11: 443-460.

7. Yuan B: regularity of weak solutions to magneto-micropolar fluid equations. Acta Mathematica Scientia 2010, 30: 1469-1480. 10.1016/S0252-9602(10)60139-7

8. Yuan J: Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations. Math Methods Appl Sci 2008, 31: 1113-1130. 10.1002/mma.967

9. Eringen A: Theory of micropolar fluids. J Math Mech 1966, 16: 1-18.

10. Lukaszewicz G: Micropolar fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Baston 1999.

11. Galdi G, Rionero S: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int J Eng Sci 1977, 15: 105-108. 10.1016/0020-7225(77)90025-8

12. Yamaguchi N: Existence of global strong solution to the micropolar fluid system in a bounded domain. Math Methods Appl Sci 2005, 28: 1507-1526. 10.1002/mma.617

13. Yuan B: On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space. Proc Am Math Soc 2010, 138: 2025-2036. 10.1090/S0002-9939-10-10232-9

14. Fan J, Zhou Y, Zhu M: A regularity criterion for the 3D micropolar fluid flows with zero angular viscosity. 2010, in press.

15. Fan J, He X: A regularity criterion of the 3D micropolar fluid flows. 2011, in press.

16. Fan J, Jin L: A regularity criterion of the micropolar fluid flows. 2011, in press.

17. Dong B, Chen Z: Regularity criteria of weak solutions to the three-dimensional micropolar flows. J Math Phys 2009, 50: 103525-1-103525-13.

18. Szopa P: Gevrey class regularity for solutions of micropolar fluid equations. J Math Anal Appl 2009, 351: 340-349. 10.1016/j.jmaa.2008.10.026

19. Ortega-Torres E, Rojas-Medar M: On the regularity for solutions of the micropolar fluid equations. Rendiconti del Seminario Matematico della Università de Padova 2009, 122: 27-37.

20. Ortega-Torres E, Rojas-Medar M, Villamizar-Roa EJ: Micropolar fluids with vanishing viscosity. Abstract Appl Anal 2010, 2010: 18. Article ID 843692

21. Sermange M, Temam R: Some mathematical questions related to the MHD equations. Commun Pure Appl Math 1983, 36: 635-666. 10.1002/cpa.3160360506

22. Caisch R, Klapper I, Steele G: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun Math Phys 1997, 184: 443-455. 10.1007/s002200050067

23. Cannone M, Chen Q, Miao C: A losing estimate for the ideal MHD equations with application to blow-up criterion. SIAM J Math Anal 2007, 38: 1847-1859. 10.1137/060652002

24. Cao C, Wu J: Two regularity criteria for the 3D MHD equations. J Diff Equ 2010, 248: 2263-2274. 10.1016/j.jde.2009.09.020

25. He C, Xin Z: Partial regularity of suitable weak sokutions to the incompressible magnetohydrodynamics equations. J Funct Anal 2005, 227: 113-152. 10.1016/j.jfa.2005.06.009

26. Lei Z, Zhou Y: BKM criterion and global weak solutions for Magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst A 2009, 25: 575-583.

27. Wu J: Regularity results for weak solutions of the 3D MHD equations. Discrete Contin Dyn Syst 2004, 10: 543-556.

28. Wu J: Regularity criteria for the generalized MHD equations. Commun Partial Differ Equ 2008, 33: 285-306. 10.1080/03605300701382530

29. Zhou Y: Remarks on regularities for the 3D MHD equations. Discrete Contin Dyn Syst 2005, 12: 881-886.

30. Zhou Y: Regularity criteria for the 3D MHD equations in term of the pressure. Int J Nonlinear Mech 2006, 41: 1174-1180. 10.1016/j.ijnonlinmec.2006.12.001

31. Zhou Y: Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poincaré Anal Non Linéaire 2007, 24: 491-505. 10.1016/j.anihpc.2006.03.014

32. Zhou Y, Gala S: Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Z Angew Math Phys 2010, 61: 193-199. 10.1007/s00033-009-0023-1

33. Zhou Y, Gala S: A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Anal 2010, 72: 3643-3648. 10.1016/j.na.2009.12.045

34. Zhou Y, Fan J: Logarithmically improved regularity criteria for the 3D viscous MHD equations. Forum Math 2010, in press.

35. Beale J, Kato T, Majda A: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun Math Phys 1984, 94: 61-66. 10.1007/BF01212349

36. Kozono H, Ogawa T, Taniuchi Y: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z 2002, 242: 251-278. 10.1007/s002090100332

37. Triebel H: Theory of Function Spaces. Monograph in Mathematics. Birkhauser, Basel 1983., 78:

38. Chemin J: Perfect Incompressible Fluids. In Oxford Lecture Ser Math Appl. Volume 14. The Clarendon Press/Oxford University Press, New York; 1998.

39. Majda A, Bertozzi A: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge; 2002.

## Acknowledgements

The authors would like to thank the referee for his/her pertinent comments and advice. This work was supported in part by Research Initiation Project for High-level Talents (201031) of North China University of Water Resources and Electric Power.

## Author information

Authors

### Corresponding author

Correspondence to Yu-Zhu Wang.

### Competing interests

The authors declare that they have no competing interests.

### Authors' contributions

YZW completed the main part of theorem in this paper, YL and YXW revised the part proof. All authors read and approve the final manuscript.

## Rights and permissions

Reprints and Permissions

Wang, YZ., Li, Y. & Wang, YX. Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity. Bound Value Probl 2011, 11 (2011). https://doi.org/10.1186/1687-2770-2011-11 