# Solvability for fractional order boundary value problems at resonance

## Abstract

In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation

$\left\{\begin{array}{cc}\hfill {D}_{{0}^{+}}^{\alpha }x\left(t\right)=f\left(t,x\left(t\right),{x}^{\prime }\left(t\right),{x}^{″}\left(t\right)\right),\hfill & \hfill t\in \left[0,1\right],\hfill \\ \hfill x\left(0\right)=x\left(1\right),\hfill & \hfill {x}^{\prime }\left(0\right)={x}^{″}\left(0\right)=0,\hfill \end{array}\right\$

where ${D}_{{0}^{+}}^{\alpha }$ denotes the Caputo fractional differential operator of order α, 2 < α ≤ 3. A new result on the existence of solutions for above fractional boundary value problem is obtained.

Mathematics Subject Classification (2000): 34A08, 34B15.

## 1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration on an arbitrary order that can be noninteger. This subject, as old as the problem of ordinary differential calculus, can go back to the times when Leibniz and Newton invented differential calculus. As is known to all, the problem for fractional derivative was originally raised by Leibniz in a letter, dated September 30, 1695.

In recent years, the fractional differential equations have received more and more attention. The fractional derivative has been occurring in many physical applications such as a non-Markovian diffusion process with memory , charge transport in amorphous semiconductors , propagations of mechanical waves in viscoelastic media , etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and material science are also described by differential equations of fractional order (see ).

Recently, boundary value problems (BVPs for short) for fractional differential equations at nonresonance have been studied in many papers (see ). Moreover, Kosmatov studied the BVPs for fractional differential equations at resonance (see ). Motivated by the work above, in this paper, we consider the following BVP of fractional equation at resonance

$\left\{\begin{array}{cc}\hfill {D}_{{0}^{+}}^{\alpha }x\left(t\right)=f\left(t,x\left(t\right),{x}^{\prime }\left(t\right),{x}^{″}\left(t\right)\right),\hfill & \hfill t\in \left[0,1\right],\hfill \\ \hfill x\left(0\right)=x\left(1\right),\hfill & \hfill {x}^{\prime }\left(0\right)={x}^{″}\left(0\right)=0,\hfill \end{array}\right\$
(1.1)

where ${D}_{{0}^{+}}^{\alpha }$ denotes the Caputo fractional differential operator of order α, 2 < α ≤ 3. f : [0, 1] × 3 → × is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary notations, definitions, and lemmas. In Section 3, we establish a theorem on existence of solutions for BVP (1.1) under nonlinear growth restriction of f, basing on the coincidence degree theory due to Mawhin (see ). Finally, in Section 4, an example is given to illustrate the main result.

## 2 Preliminaries

In this section, we will introduce notations, definitions, and preliminary facts that are used throughout this paper.

Let X and Y be real Banach spaces and let L : domL XY be a Fredholm operator with index zero, and P : XX, Q : YY be projectors such that

$\begin{array}{c}\mathsf{\text{Im}}P=\mathsf{\text{Ker}}L,\phantom{\rule{1em}{0ex}}\mathsf{\text{Ker}}Q=\mathsf{\text{Im}}L,\\ X=\mathsf{\text{Ker}}L\oplus \mathsf{\text{Ker}}P,\phantom{\rule{1em}{0ex}}Y=\mathsf{\text{Im}}L\oplus \mathsf{\text{Im}}Q.\end{array}$

It follows that

$L{|}_{\mathsf{\text{dom}}L\cap \mathsf{\text{Ker}}P}\phantom{\rule{2.77695pt}{0ex}}:\mathsf{\text{dom}}L\cap \mathsf{\text{Ker}}P\to \mathsf{\text{Im}}L$

is invertible. We denote the inverse by K P .

If Ω is an open bounded subset of X, and $\mathsf{\text{dom}}L\cap \stackrel{̄}{\Omega }\ne \varnothing$, the map N : XY will be called L-compact on $\overline{\Omega }$ if $QN\left(\overline{\Omega }\right)$ is bounded and ${K}_{P}\left(I-Q\right)N:\overline{\Omega }\to X$ is compact. Where I is identity operator.

Lemma 2.1. () If Ω is an open bounded set, let L : domL XY be a Fredholm operator of index zero and N : XY L-compact on $\overline{\Omega }$. Assume that the following conditions are satisfied

1. (1)

LxλNx for every (x, λ) [(domL\KerL)] ∩ ∂Ω × (0, 1);

2. (2)

Nx ImL for every x KerL ∩ ∂Ω;

3. (3)

deg(QN|KerL, KerL ∩ Ω, 0) ≠ 0, where Q : YY is a projection such that ImL = KerQ.

Then the equation Lx = Nx has at least one solution in $\mathsf{\text{dom}}L\cap \overline{\Omega }$.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0 of a function x is given by

${I}_{{0}^{+}}^{\alpha }x\left(t\right)=\frac{1}{\Gamma \left(\alpha \right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -1}x\left(s\right)\mathsf{\text{d}}s,$

provided that the right side integral is pointwise defined on (0, +∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function x is given by

${D}_{{0}^{+}}^{\alpha }x\left(t\right)={I}_{{0}^{+}}^{n-\alpha }\frac{{\mathsf{\text{d}}}^{n}x\left(t\right)}{\mathsf{\text{d}}{t}^{n}}=\frac{1}{\Gamma \left(n-\alpha \right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{n-\alpha -1}{x}^{\left(n\right)}\left(s\right)\mathsf{\text{d}}s,$

where n is the smallest integer greater than or equal to α, provided that the right side integral is pointwise defined on (0, +∞).

Lemma 2.2. () For α > 0, the general solution of the Caputo fractional differential equation

${D}_{{0}^{+}}^{\alpha }x\left(t\right)=0$

is given by

$x\left(t\right)={c}_{0}+{c}_{1}t+{c}_{2}{t}^{2}+\cdots +{c}_{n-1}{t}^{n-1},$

where c i , i = 0, 1, 2, . . ., n - 1; here, n is the smallest integer greater than or equal to α.

Lemma 2.3. () Assume that x C(0, 1) ∩ L(0, 1) with a Caputo fractional derivative of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then,

${I}_{{0}^{+}}^{\alpha }{D}_{{0}^{+}}^{\alpha }x\left(t\right)=x\left(t\right)+{c}_{0}+{c}_{1}t+{c}_{2}{t}^{2}+\cdots +{c}_{n-1}{t}^{n-1}$

where c i , i = 0, 1, 2, . . ., n - 1; here, n is the smallest integer greater than or equal to α.

In this paper, we denote X = C2[0, 1] with the norm ||x|| X = max{||x||, ||x'||, ||x"||} and Y = C[0, 1] with the norm ||y|| Y = ||y||, where ||x|| = max t [0, 1] |x(t)|. Obviously, both X and Y are Banach spaces.

Define the operator L : domL XY by

$Lx={D}_{{0}^{+}}^{\alpha }x,$
(2.1)

where

$\mathsf{\text{dom}}L=\left\{x\in X|{D}_{{0}^{+}}^{\alpha }x\left(t\right)\in Y,\phantom{\rule{2.77695pt}{0ex}}x\left(0\right)=x\left(1\right),\phantom{\rule{2.77695pt}{0ex}}{x}^{\prime }\left(0\right)={x}^{″}\left(0\right)=0\right\}.$

Let N : XY be the Nemytski operator

$Nx\left(t\right)=f\left(t,x\left(t\right),{x}^{\prime }\left(t\right),{x}^{″}\left(t\right)\right),\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right].$

Then, BVP (1.1) is equivalent to the operator equation

$Lx=Nx,\phantom{\rule{1em}{0ex}}x\in \mathsf{\text{dom}}L.$

## 3 Main result

In this section, a theorem on existence of solutions for BVP (1.1) will be given.

Theorem 3.1. Let f : [0, 1] × 3 be continuous. Assume that

(H1) there exist nonnegative functions p, q, r, s C[0, 1] with Γ(α - 1) - q1 - r1 - s1 > 0 such that

$|f\left(t,u,v,w\right)|\le p\left(t\right)+q\left(t\right)|u|+r\left(t\right)|v|+s\left(t\right)|w|,\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right],\phantom{\rule{2.77695pt}{0ex}}\left(u,v,w\right)\in {ℝ}^{3},$

where p1 = ||p||, q1 = ||q||, r1 = ||r||, s1 = ||s||.

(H2) there exists a constant B > 0 such that for all u with |u| > B either

$uf\left(t,u,v,w\right)>0,\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right],\phantom{\rule{2.77695pt}{0ex}}\left(v,w\right)\in {ℝ}^{2}$

or

$uf\left(t,u,v,w\right)<0,\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right],\phantom{\rule{2.77695pt}{0ex}}\left(v,w\right)\in {ℝ}^{2}.$

Then, BVP (1.1) has at leat one solution in X.

Now, we begin with some lemmas below.

Lemma 3.1. Let L be defined by (2.1), then

$\mathsf{\text{Ker}}L=\left\{x\in X|x\left(t\right)={c}_{0},\phantom{\rule{2.77695pt}{0ex}}{c}_{0}\in ℝ,\phantom{\rule{2.77695pt}{0ex}}\forall t\in \left[0,1\right]\right\},$
(3.1)
$\mathsf{\text{Im}}L=\left\{y\in Y|\underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}y\left(s\right)\mathsf{\text{d}}s=0\right\}.$
(3.2)

Proof. By Lemma 2.2, ${D}_{{0}^{+}}^{\alpha }x\left(t\right)=0$ has solution

$x\left(t\right)={c}_{0}+{c}_{1}t+{c}_{2}{t}^{2},\phantom{\rule{1em}{0ex}}{c}_{0},{c}_{1},{c}_{2}\in ℝ.$

Combining with the boundary value condition of BVP (1.1), one has (3.1) hold.

For y ImL, there exists x domL such that y = Lx Y. By Lemma 2.3, we have

$x\left(t\right)=\frac{1}{\Gamma \left(\alpha \right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -1}y\left(s\right)\mathsf{\text{d}}s+{c}_{0}+{c}_{1}t+{c}_{2}{t}^{2}.$

Then, we have

${x}^{\prime }\left(t\right)=\frac{1}{\Gamma \left(\alpha -1\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -2}y\left(s\right)\mathsf{\text{d}}s+{c}_{1}+2{c}_{2}t$

and

${x}^{″}\left(t\right)=\frac{1}{\Gamma \left(\alpha -2\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -3}y\left(s\right)\mathsf{\text{d}}s+2{c}_{2}.$

By conditions of BVP (1.1), we can get that y satisfies

$\underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}y\left(s\right)\mathsf{\text{d}}s=0.$

Thus, we get (3.2). On the other hand, suppose y Y and satisfies ${\int }_{0}^{1}{\left(1-s\right)}^{\alpha -1}y\left(s\right)\mathsf{\text{d}}s=0$. Let $x\left(t\right)={I}_{{0}^{+}}^{\alpha }y\left(t\right)$, then x domL and ${D}_{{0}^{+}}^{\alpha }x\left(t\right)=y\left(t\right)$. So that, y ImL. The proof is complete.

Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index zero, and the linear continuous projector operators P : XX and Q : YY can be defined as

$\begin{array}{lll}\hfill Px\left(t\right)& =x\left(0\right),\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right],\phantom{\rule{2em}{0ex}}& \hfill \\ \hfill Qy\left(t\right)& =\alpha \underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}y\left(s\right)\mathsf{\text{d}}s,\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right].\phantom{\rule{2em}{0ex}}& \hfill \\ \hfill \end{array}$

Furthermore, the operator K P : ImL → domL ∩ KerP can be written by

${K}_{P}y\left(t\right)=\frac{1}{\Gamma \left(\alpha \right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -1}y\left(s\right)\mathsf{\text{d}}s,\phantom{\rule{1em}{0ex}}\forall t\in \left[0,1\right].$

Proof. Obviously, ImP = KerL and P2x = Px. It follows from x = (x - Px) + Px that X = KerP + KerL. By simple calculation, we can get that KerL ∩ KerP = {0}. Then, we get

$X=\mathsf{\text{Ker}}L\oplus \mathsf{\text{Ker}}P.$

For y Y, we have

${Q}^{2}y=Q\left(Qy\right)=Qy\cdot \alpha \underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}\mathsf{\text{d}}s=Qy.$

Let y = (y - Qy) + Qy, where y - Qy KerQ = ImL, Qy ImQ. It follows from KerQ = ImL and Q2y = Qy that ImQ ∩ ImL = {0}. Then, we have

$Y=\mathsf{\text{Im}}L\oplus \mathsf{\text{Im}}Q.$

Thus,

$\mathsf{\text{dim}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{Ker}}L=\mathsf{\text{dim}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{Im}}Q=\mathsf{\text{codim}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{Im}}L=1.$

This means that L is a Fredholm operator of index zero.

From the definitions of P, K P , it is easy to see that the generalized inverse of L is K P . In fact, for y ImL, we have

$L{K}_{P}y={D}_{{0}^{+}}^{\alpha }{I}_{{0}^{+}}^{\alpha }y=y.$
(3.3)

Moreover, for x domL ∩ KerP, we get x(0) = x'(0) = x"(0) = 0. By Lemma 2.3, we obtain that

${I}_{{0}^{+}}^{\alpha }Lx\left(t\right)={I}_{{0}^{+}}^{\alpha }{D}_{{0}^{+}}^{\alpha }x\left(t\right)=x\left(t\right)+{c}_{0}+{c}_{1}t+{c}_{2}{t}^{2},\phantom{\rule{1em}{0ex}}{c}_{0},\phantom{\rule{2.77695pt}{0ex}}{c}_{1},\phantom{\rule{2.77695pt}{0ex}}{c}_{2}\in ℝ,$

which together with x(0) = x'(0) = x"(0) = 0 yields that

${K}_{P}Lx=x.$
(3.4)

Combining (3.3) with (3.4), we know that K P = (L|domL∩KerP)-1. The proof is complete.

Lemma 3.3. Assume Ω X is an open bounded subset such that $\mathsf{\text{dom}}L\cap \stackrel{̄}{\Omega }\ne \varnothing$, then N is L-compact on $\overline{\Omega }$.

Proof. By the continuity of f, we can get that $QN\left(\overline{\Omega }\right)$ and ${K}_{P}\left(I-Q\right)N\left(\overline{\Omega }\right)$ are bounded. So, in view of the Arzelà -Ascoli theorem, we need only prove that ${K}_{P}\left(I-Q\right)N\left(\overline{\Omega }\right)\subset X$ is equicontinuous.

From the continuity of f, there exists constant A > 0 such that |(I - Q)Nx| ≤ A, $\forall x\in \overline{\Omega }$, t [0, 1]. Furthermore, denote K P,Q = K P (I - Q)N and for 0 ≤ t1 < t2 ≤ 1, $x\in \overline{\Omega }$, we have

$\begin{array}{c}\left|\left({K}_{P,Q}x\right)\left({t}_{2}\right)-\left({K}_{P,Q}x\right)\left({t}_{1}\right)\right|\\ \phantom{\rule{1em}{0ex}}\le \frac{1}{\Gamma \left(\alpha \right)}\left|\underset{0}{\overset{{t}_{2}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -1}\left(I-Q\right)Nx\left(s\right)\mathsf{\text{d}}s-\underset{0}{\overset{{t}_{1}}{\int }}{\left({t}_{1}-s\right)}^{\alpha -1}\left(I-Q\right)Nx\left(s\right)\mathsf{\text{d}}s\right|\\ \phantom{\rule{1em}{0ex}}\le \frac{A}{\Gamma \left(\alpha \right)}\left[\underset{0}{\overset{{t}_{1}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -1}-{\left({t}_{1}-s\right)}^{\alpha -1}\mathsf{\text{d}}s+\underset{{t}_{1}}{\overset{{t}_{2}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -1}\mathsf{\text{d}}s\right]\\ \phantom{\rule{1em}{0ex}}=\frac{A}{\Gamma \left(\alpha +1\right)}\left({t}_{2}^{\alpha }-{t}_{1}^{\alpha }\right),\\ |{\left({K}_{P,Q}x\right)}^{\prime }\left({t}_{2}\right)-{\left({K}_{P,Q}x\right)}^{\prime }\left({t}_{1}\right)|\\ \phantom{\rule{1em}{0ex}}=\frac{\alpha -1}{\Gamma \left(\alpha \right)}\left|\underset{0}{\overset{{t}_{2}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -2}\left(I-Q\right)Nx\left(s\right)\mathsf{\text{d}}s-\underset{0}{\overset{{t}_{1}}{\int }}{\left({t}_{1}-s\right)}^{\alpha -2}\left(I-Q\right)Nx\left(s\right)\mathsf{\text{d}}s\right|\\ \phantom{\rule{1em}{0ex}}\le \frac{A}{\Gamma \left(\alpha -1\right)}\left[\underset{0}{\overset{{t}_{1}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -2}-{\left({t}_{1}-s\right)}^{\alpha -2}\mathsf{\text{d}}s+\underset{{t}_{1}}{\overset{{t}_{2}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -2}\mathsf{\text{d}}s\right]\\ \phantom{\rule{1em}{0ex}}\le \frac{A}{\Gamma \left(\alpha \right)}\left({t}_{2}^{\alpha -1}-{t}_{1}^{\alpha -1}\right)\end{array}$

and

$\begin{array}{l}|\left({K}_{P,Q}x{\right)}^{″}\left({t}_{2}\right)-\left({K}_{P,Q}x{\right)}^{″}\left({t}_{1}\right)|\\ \phantom{\rule{0.25em}{0ex}}=\frac{\left(\alpha -2\right)\left(\alpha -1\right)}{\Gamma \left(\alpha \right)}|\underset{0}{\overset{{t}_{2}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -3}\left(I-Q\right)Nx\left(s\right)\text{d}s-\underset{0}{\overset{{t}_{1}}{\int }}{\left({t}_{1}-s\right)}^{\alpha -3}\left(I-Q\right)Nx\left(s\right)\text{d}s|\\ \phantom{\rule{0.25em}{0ex}}\le \frac{A}{\Gamma \left(\alpha -2\right)}\left[\underset{0}{\overset{{t}_{1}}{\int }}{\left({t}_{1}-s\right)}^{\alpha -3}-{\left({t}_{2}-s\right)}^{\alpha -3}\text{d}s+\underset{{t}_{1}}{\overset{{t}_{2}}{\int }}{\left({t}_{2}-s\right)}^{\alpha -3}\text{d}s\right]\\ \phantom{\rule{0.25em}{0ex}}\le \frac{A}{\Gamma \left(\alpha -1\right)}\left[{t}_{1}^{\alpha -2}-{t}_{2}^{\alpha -2}+2\left({t}_{2}-{t}_{1}{\right)}^{\alpha -2}\right].\end{array}$

Since tα , tα-1 and tα-2 are uniformly continuous on [0, 1], we can get that ${K}_{P,Q}\left(\overline{\Omega }\right)\subset C\left[0,1\right]$, ${\left({K}_{P,Q}\right)}^{\prime }\left(\overline{\Omega }\right)\subset C\left[0,1\right]$ and ${\left({K}_{P,Q}\right)}^{″}\left(\overline{\Omega }\right)\subset C\left[0,1\right]$ are equicontinuous. Thus, we get that ${K}_{P,Q}:\overline{\Omega }\to X$ is compact. The proof is completed.

Lemma 3.4. Suppose (H1), (H2) hold, then the set

${\Omega }_{1}=\left\{x\in \mathsf{\text{dom}}L\\mathsf{\text{Ker}}L|Lx=\lambda Nx,\phantom{\rule{1em}{0ex}}\lambda \in \left(0,1\right)\right\}$

is bounded.

Proof. Take x Ω1, then Nx ImL. By (3.2), we have

$\underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}f\left(s,x\left(s\right),{x}^{\prime }\left(s\right),{x}^{″}\left(s\right)\right)\mathsf{\text{d}}s=0.$

Then, by the integral mean value theorem, there exists a constant ξ (0, 1) such that f(ξ, x(ξ), x'(ξ), x"(ξ)) = 0. Then from (H2), we have |x(ξ)| ≤ B.

Then, we have

$|x\left(t\right)|\phantom{\rule{2.77695pt}{0ex}}=\left|x\left(\xi \right)+\underset{\xi }{\overset{t}{\int }}{x}^{\prime }\left(s\right)\mathsf{\text{d}}s\right|\le B+\parallel {x}^{\prime }{\parallel }_{\infty }.$

That is

$\parallel x{\parallel }_{\infty }\le B+\parallel {x}^{\prime }{\parallel }_{\infty }.$
(3.5)

From x domL, we get x'(0) = 0. Therefore,

$|{x}^{\prime }\left(t\right)|=\left|{x}^{\prime }\left(0\right)+\underset{0}{\overset{t}{\int }}{x}^{″}\left(s\right)\mathsf{\text{d}}s\right|\le \parallel {x}^{″}{\parallel }_{\infty }.$

That is

$\parallel {x}^{\prime }{\parallel }_{\infty }\le \parallel {x}^{″}{\parallel }_{\infty }.$
(3.6)

By Lx = λNx and x domL, we have

$x\left(t\right)=\frac{\lambda }{\Gamma \left(\alpha \right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -1}f\left(s,x\left(s\right),{x}^{\prime }\left(s\right),{x}^{″}\left(s\right)\right)\mathsf{\text{d}}s+x\left(0\right).$

Then we get

${x}^{\prime }\left(t\right)=\frac{\lambda }{\Gamma \left(\alpha -1\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -2}f\left(s,x\left(s\right),{x}^{\prime }\left(s\right),{x}^{″}\left(s\right)\right)\mathsf{\text{d}}s$

and

${x}^{″}\left(t\right)=\frac{\lambda }{\Gamma \left(\alpha -2\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -3}f\left(s,x\left(s\right),{x}^{\prime }\left(s\right),{x}^{″}\left(s\right)\right)\mathsf{\text{d}}s.$

From (3.5),(3.6), and (H1), we have

$\begin{array}{lll}\hfill {∥{x}^{″}∥}_{\infty }& \le \frac{1}{\Gamma \left(\alpha -2\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -3}|f\left(s,x\left(s\right),{x}^{\prime }\left(s\right),{x}^{″}\left(s\right)\right)|\mathsf{\text{d}}s\phantom{\rule{2em}{0ex}}& \hfill \\ \le \frac{1}{\Gamma \left(\alpha -2\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -3}\left[p\left(s\right)+q\left(s\right)|x\left(s\right)|+r\left(s\right)|{x}^{\prime }\left(s\right)|+s\left(s\right)|{x}^{″}\left(s\right)|\right]\mathsf{\text{d}}s\phantom{\rule{2em}{0ex}}& \hfill \\ \le \frac{1}{\Gamma \left(\alpha -2\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -3}\left({p}_{1}+{q}_{1}\parallel x{\parallel }_{\infty }+{r}_{1}\parallel {x}^{\prime }{\parallel }_{\infty }+{s}_{1}\parallel {x}^{″}{\parallel }_{\infty }\right)\mathsf{\text{d}}s\phantom{\rule{2em}{0ex}}& \hfill \\ \le \frac{1}{\Gamma \left(\alpha -2\right)}\underset{0}{\overset{t}{\int }}{\left(t-s\right)}^{\alpha -3}\left[{p}_{1}+{q}_{1}B+\left({q}_{1}+{r}_{1}+{s}_{1}\right)\parallel {x}^{″}{\parallel }_{\infty }\right]\mathsf{\text{d}}s\phantom{\rule{2em}{0ex}}& \hfill \\ \le \frac{1}{\Gamma \left(\alpha -1\right)}\left[{p}_{1}+{q}_{1}B+\left({q}_{1}+{r}_{1}+{s}_{1}\right)\parallel {x}^{″}{\parallel }_{\infty }\right].\phantom{\rule{2em}{0ex}}& \hfill \\ \hfill \end{array}$

Thus, from Γ(α - 1) - q1 - r1 - s1 > 0, we obtain that

$\parallel {x}^{″}{\parallel }_{\infty }\le \frac{{p}_{1}+{q}_{1}B}{\Gamma \left(\alpha -1\right)-{q}_{1}-{r}_{1}-{s}_{1}}:={M}_{1}.$

Thus, we get

$\parallel {x}^{\prime }{\parallel }_{\infty }\le \parallel {x}^{″}{\parallel }_{\infty }\le {M}_{1}$

and

$\parallel x{\parallel }_{\infty }\le B+\parallel {x}^{\prime }{\parallel }_{\infty }\le B+{M}_{1}.$

Therefore,

$\parallel x{\parallel }_{X}\le max\left\{{M}_{1},B+{M}_{1}\right\}.$

So Ω1 is bounded. The proof is complete.

Lemma 3.5. Suppose (H2) holds, then the set

${\Omega }_{2}=\left\{x|x\in \mathsf{\text{Ker}}L,Nx\in \mathsf{\text{Im}}L\right\}$

is bounded.

Proof. For x Ω2, we have x(t) = c, c , and Nx ImL. Then, we get

$\underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}f\left(s,c,0,0\right)\mathsf{\text{d}}s=0,$

which together with (H2) implies |c| ≤ B. Thus, we have

$\parallel x{\parallel }_{X}\le B.$

Hence, Ω2 is bounded. The proof is complete.

Lemma 3.6. Suppose the first part of (H2) holds, then the set

${\Omega }_{3}=\left\{x|x\in \mathsf{\text{Ker}}L,\lambda x+\left(1-\lambda \right)QNx=0,\phantom{\rule{1em}{0ex}}\lambda \in \left[0,1\right]\right\}$

is bounded.

Proof. For x Ω3, we have x(t) = c, c , and

$\lambda c+\left(1-\lambda \right)\alpha \underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}f\left(s,c,0,0\right)\mathsf{\text{d}}s=0.$
(3.7)

If λ = 0, then |c| ≤ B because of the first part of (H2). If λ (0, 1], we can also obtain |c| ≤ B. Otherwise, if |c| > B, in view of the first part of (H2), one has

$\lambda {c}^{2}+\left(1-\lambda \right)\alpha \underset{0}{\overset{1}{\int }}{\left(1-s\right)}^{\alpha -1}cf\left(s,c,0,0\right)\mathsf{\text{d}}s>0,$

which contradicts to (3.7).

Therefore, Ω3 is bounded. The proof is complete.

Remark 3.1. Suppose the second part of (H2) hold, then the set

${\Omega }_{3}^{\prime }=\left\{x|x\in \mathsf{\text{Ker}}L,\phantom{\rule{2.77695pt}{0ex}}-\lambda x+\left(1-\lambda \right)QNx=0,\phantom{\rule{1em}{0ex}}\lambda \in \left[0,1\right]\right\}$

is bounded.

The proof of Theorem 3.1. Set Ω = {x X | ||x|| X < max{M1, B, B + M1} + 1}. It follows from Lemma 3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-compact on $\overline{\Omega }$. By Lemma 3.4 and 3.5, we get that the following two conditions are satisfied

1. (1)

LxλNx for every (x, λ) [(domL\KerL) ∩ ∂Ω] × (0, 1);

2. (2)

Nx ImL for every x KerL ∩ ∂Ω.

Take

$H\left(x,\lambda \right)=±\lambda x+\left(1-\lambda \right)QNx.$

According to Lemma 3.6 (or Remark 3.1), we know that H(x, λ) ≠ 0 for x KerL ∩ ∂Ω. Therefore,

So that, the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we can get that Lx = Nx has at least one solution in $\mathsf{\text{dom}}L\cap \overline{\Omega }$. Therefore, BVP (1.1) has at least one solution. The proof is complete.

## 4 An example

Example 4.1. Consider the following BVP

$\left\{\begin{array}{ll}{D}_{{0}^{+}}^{\frac{5}{2}}x\left(t\right)=\frac{t}{16}\left(x-10\right)+\frac{{t}^{2}}{16}{\text{e}}^{-|{x}^{\prime }|}+\frac{{t}^{3}}{16}\mathrm{sin}\left[\left({x}^{″}{\right)}^{2}\right],\hfill & \phantom{\rule{0.25em}{0ex}}t\in \left[0,1\right]\hfill \\ x\left(0\right)=x\left(1\right),\hfill & \phantom{\rule{0.25em}{0ex}}{x}^{\prime }\left(0\right)={x}^{″}\left(0\right)=0.\hfill \end{array}$
(4.1)

where

$f\left(t,u,v,w\right)=\frac{t}{16}\left(u-10\right)+\frac{{t}^{2}}{16}{e}^{-|v|}+\frac{{t}^{3}}{16}sin\left({w}^{2}\right).$

Choose $p\left(t\right)=\frac{10t+2}{16}$, $q\left(t\right)=\frac{t}{16}$, r(t) = 0, s(t) = 0, B = 10. We can get that ${q}_{1}=\frac{1}{16}$, r1 = 0, s1 = 0 and

$\Gamma \left(\frac{5}{2}-1\right)-{q}_{1}-{r}_{1}-{s}_{1}>0.$

Then, all conditions of Theorem 3.1 hold, so BVP (4.1) has at least one solution.

## References

1. Metzler R, Klafter J: Boundary value problems for fractional diffusion equations. Phys A 2000, 278: 107-125. 10.1016/S0378-4371(99)00503-8

2. Scher H, Montroll E: Anomalous transit-time dispersion in amorphous solids. Phys Rev B 1975, 12: 2455-2477. 10.1103/PhysRevB.12.2455

3. Mainardi F: Fractional diffusive waves in viscoelastic solids. In Nonlinear Waves in Solids. Edited by: Wegner JL, Norwood FR. ASME/AMR, Fairfield NJ; 1995:93-97.

4. Diethelm K, Freed AD: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties. Edited by: Keil F, Mackens W, Voss H, Werther J. Springer, Heidelberg; 1999:217-224.

5. Gaul L, Klein P, Kempfle S: Damping description involving fractional operators. Mech Syst Signal Process 1991, 5: 81-88. 10.1016/0888-3270(91)90016-X

6. Glockle WG, Nonnenmacher TF: A fractional calculus approach of self-similar protein dynamics. Biophys J 1995, 68: 46-53. 10.1016/S0006-3495(95)80157-8

7. Mainardi F: Fractional calculus: some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics. Edited by: Carpinteri A, Mainardi F. Springer, Wien; 1997:291-348.

8. Metzler F, Schick W, Kilian HG, Nonnenmacher TF: Relaxation in filled polymers: a fractional calculus approach. J Chem Phys 1995, 103: 7180-7186. 10.1063/1.470346

9. Oldham KB, Spanier J: The Fractional Calculus. Academic Press, New York, London; 1974.

10. Agarwal RP, ORegan D, Stanek S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J Math Anal Appl 2010, 371:, 57-68.

11. Bai Z, Hu L: Positive solutions for boundary value problem of nonlinear fractional differential equation. J Math Anal Appl 2005, 311: 495-505. 10.1016/j.jmaa.2005.02.052

12. Kaufmann ER, Mboumi E: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron J Qual Theory Differ Equ 2008, 3: 1-11.

13. Jafari H, Gejji VD: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl Math Comput 2006, 180: 700-706. 10.1016/j.amc.2006.01.007

14. Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal 2009, 71: 2391-2396. 10.1016/j.na.2009.01.073

15. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045

16. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron J Differ Equ 2006, 36: 1-12.

17. Kosmatov N: A boundary value problem of fractional order at resonance. Electron J Differ Equ 2010, 135: 1-10.

18. Mawhin J: Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations. Lect Notes Math 1993, 1537: 74-142. 10.1007/BFb0085076

19. Lakshmikantham V, Leela S, Vasundhara Devi J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge; 2009.

## Acknowledgements

The authors would like to thank the referees very much for their helpful comments and suggestions. This research was supported by the Fundamental Research Funds for the Central Universities (2010LKSX09) and the Science Foundation of China University of Mining and Technology (2008A037).

## Author information

Authors

### Corresponding author

Correspondence to Zhigang Hu.

### Competing interests

The authors declare that they have no competing interests.

### Authors' contributions

All authors typed, read and approved the final manuscript.

## Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

Hu, Z., Liu, W. Solvability for fractional order boundary value problems at resonance. Bound Value Probl 2011, 20 (2011). https://doi.org/10.1186/1687-2770-2011-20

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-2770-2011-20

### Keywords

• Fractional differential equations
• boundary value problems
• resonance
• coincidence degree theory 