# Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces

## Abstract

The long-time behavior of solution to extended Fisher-Kolmogorov equation is considered in this article. Using an iteration procedure, regularity estimates for the linear semigroups and a classical existence theorem of global attractor, we prove that the extended Fisher-Kolmogorov equation possesses a global attractor in Sobolev space Hk for all k > 0, which attracts any bounded subset of Hk (Ω) in the Hk -norm.

2000 Mathematics Subject Classification: 35B40; 35B41; 35K25; 35K30.

## 1 Introduction

$\left\{\begin{array}{cc}\hfill \frac{\partial u}{\partial t}=-\beta {\mathrm{\Delta }}^{2}u+\mathrm{\Delta }u-{u}^{3}+u\hfill & \hfill in\phantom{\rule{1em}{0ex}}\mathrm{\Omega }×\left(0,\mathrm{\infty }\right),\hfill \\ \hfill u=0,\phantom{\rule{1em}{0ex}}\mathrm{\Delta }u=0,\hfill & \hfill in\phantom{\rule{1em}{0ex}}\partial \mathrm{\Omega }×\left(0,\mathrm{\infty }\right),\hfill \\ \hfill u\left(x,0\right)=\phi ,\hfill & \hfill in\phantom{\rule{1em}{0ex}}\mathrm{\Omega },\hfill \end{array}\right\$
(1.1)

where β > 0 is given, Δ is the Laplacian operator, and Ω denotes an open bounded set of Rn(n = 1, 2, 3) with smooth boundary ∂Ω.

The extended Fisher-Kolmogorov equation proposed by Dee and Saarloos  in 1987-1988, which serves as a model in studies of pattern formation in many physical, chemical, or biological systems, also arises in the theory of phase transitions near Lifshitz points. The extended Fisher-Kolmogorov equation (1.1) have extensively been studied during the last decades. In 1995-1998, Peletier and Troy  studied spatial patterns, the existence of kinds and stationary solutions of the extended Fisher-Kolmogorov equation (1.1) in their articles. Van der Berg and Kwapisz [8, 9] proved uniqueness of solutions for the extended Fisher-Kolmogorov equation in 1998-2000. Tersian and Chaparova , Smets and Van den Berg , and Li  catch Periodic and homoclinic solution of Equation (1.1).

The global asymptotical behaviors of solutions and existence of global attractors are important for the study of the dynamical properties of general nonlinear dissipative dynamical systems. So, many authors are interested in the existence of global attractors such as Hale, Temam, among others .

In this article, we shall use the regularity estimates for the linear semigroups, combining with the classical existence theorem of global attractors, to prove that the extended Fisher-Kolmogorov equation possesses, in any k th differentiable function spaces Hk(Ω), a global attractor, which attracts any bounded set of Hk(Ω) in Hk-norm. The basic idea is an iteration procedure which is from recent books and articles .

## 2 Preliminaries

Let X and X1 be two Banach spaces, X1 X a compact and dense inclusion. Consider the abstract nonlinear evolution equation defined on X, given by

$\left\{\begin{array}{c}\hfill \frac{du}{dt}=Lu+G\left(u\right),\hfill \\ \hfill u\left(x,0\right)={u}_{0}.\hfill \end{array}\right\$
(2.1)

where u(t) is an unknown function, L: X1X a linear operator, and G: X1X a nonlinear operator.

A family of operators S(t): XX(t ≥ 0) is called a semigroup generated by (2.1) if it satisfies the following properties:

1. (1)

S(t): XX is a continuous map for any t ≥ 0,

2. (2)

S(0) = id: XX is the identity,

3. (3)

S(t + s) = S(t) · S(s), t, s ≥ 0. Then, the solution of (2.1) can be expressed as

$u\left(t,{u}_{0}\right)=S\left(t\right){u}_{0}.$

Next, we introduce the concepts and definitions of invariant sets, global attractors, and ω-limit sets for the semigroup S(t).

Definition 2.1 Let S(t) be a semigroup defined on X. A set Σ X is called an invariant set of S(t) if S(t)Σ = Σ, t ≥ 0. An invariant set Σ is an attractor of S(t) if Σ is compact, and there exists a neighborhood U X of Σ such that for any u0 U,

${inf}_{v\in \Sigma }\parallel S\left(t\right){u}_{0}-v{\parallel }_{X}\to 0,\phantom{\rule{1em}{0ex}}\mathsf{\text{as}}\phantom{\rule{1em}{0ex}}t\to \mathrm{\infty }.$

In this case, we say that Σ attracts U. Especially, if Σ attracts any bounded set of X, Σ is called a global attractor of S(t) in X.

For a set D X, we define the ω-limit set of D as follows:

$\omega \left(D\right)=\bigcap _{s\ge 0}\overline{\bigcup _{t\ge s}S\left(t\right)D},$

where the closure is taken in the X-norm. Lemma 2.1 is the classical existence theorem of global attractor by Temam .

Lemma 2.1 Let S(t): XX be the semigroup generated by (2.1). Assume the following conditions hold:

1. (1)

S(t) has a bounded absorbing set B X, i.e., for any bounded set A X there exists a time t A ≥ 0 such that S(t)u0 B, u0 A and t > t A ;

2. (2)

S(t) is uniformly compact, i.e., for any bounded set U X and some T > 0 sufficiently large, the set $\overline{{\bigcup }_{t\ge T}S\left(t\right)U}$ is compact in X.

Then the ω-limit set $\mathcal{A}=\omega \left(B\right)$ of B is a global attractor of (2.1), and $\mathcal{A}$ is connected providing B is connected.

Note that we used to assume that the linear operator L in (2.1) is a sectorial operator which generates an analytic semigroup etL. It is known that there exists a constant λ ≥ 0 such that L - λI generates the fractional power operators ${\mathcal{L}}^{\alpha }$ and fractional order spaces X α for α R1, where $\mathcal{L}=-\left(L-\lambda I\right)$. Without loss of generality, we assume that L generates the fractional power operators ${\mathcal{L}}^{\alpha }$ and fractional order spaces X α as follows:

${\mathcal{L}}^{\alpha }=\left(-L{\right)}^{\alpha }:{X}_{\alpha }\to X,\alpha \in {R}^{1},$

where ${X}_{\alpha }=D\left({\mathcal{L}}^{\alpha }\right)$ is the domain of ${\mathcal{L}}^{\alpha }$. By the semigroup theory of linear operators , we know that X β X α is a compact inclusion for any β > α.

Thus, Lemma 2.1 can equivalently be expressed in Lemma 2.2 .

Lemma 2.2 Let u(t, u0) = S(t)u0(u0 X, t ≥ 0) be a solution of (2.1) and S(t) be the semigroup generated by (2.1). Let X α be the fractional order space generated by L. Assume:

1. (1)

for some α ≥ 0, there is a bounded set B X α such that for any u0 X α there exists ${t}_{{u}_{0}}>0$ with

$u\left(t,{u}_{0}\right)\in B,\phantom{\rule{1em}{0ex}}\forall t>{t}_{{u}_{0}};$
2. (2)

there is a β > α, for any bounded set U X β there are T > 0 and C > 0 such that

$\parallel u\left(t,{u}_{0}\right){\parallel }_{{X}_{\beta }}\le C,\phantom{\rule{1em}{0ex}}\forall t>T,\phantom{\rule{1em}{0ex}}{u}_{0}\in U.$

Then, Equation (2.1) has a global attractor $\mathcal{A}\subset {X}_{\alpha }$ which attracts any bounded set of X α in the X α -norm.

For Equation (2.1) with variational characteristic, we have the following existence theorem of global attractor [20, 22].

Lemma 2.3 Let L: X1X be a sectorial operator, X α = D((-L) α) and G: X α X(0 < α < 1) be a compact mapping. If

1. (1)

there is a functional F: X α R such that DF = L + G and $F\left(u\right)\le -{\beta }_{1}\parallel u{\parallel }_{{X}_{\alpha }}^{2}+{\beta }_{2}$,

2. (2)

$}_{X}\le -{C}_{1}\parallel u{\parallel }_{{X}_{\alpha }}^{2}+{C}_{2}$,

then

1. (1)

Equation (2.1) has a global solution

$u\in C\left(\left[0,\mathrm{\infty }\right),{X}_{\alpha }\right)\cap {H}^{1}\left(\left[0,\mathrm{\infty }\right),X\right)\cap C\left(\left[0,\mathrm{\infty }\right),X\right),$
2. (2)

Equation (2.1) has a global attractor $\mathcal{A}\subset X$ which attracts any bounded set of X, where DF is a derivative operator of F, and β1, β2, C1, C2 are positive constants.

For sectorial operators, we also have the following properties which can be found in .

Lemma 2.4 Let L: X1X be a sectorial operator which generates an analytic semigroup T(t) = etL. If all eigenvalues λ of L satisfy Reλ < -λ0 for some real number λ0 > 0, then for ${\mathcal{L}}^{\alpha }\left(\mathcal{L}=-L\right)$ we have

1. (1)

T(t): XX α is bounded for all α R1 and t > 0,

2. (2)

$T\left(t\right){\mathcal{L}}^{\alpha }x={\mathcal{L}}^{\alpha }T\left(t\right)x,\phantom{\rule{0.3em}{0ex}}\forall x\in {X}_{\alpha }$,

3. (3)

for each t > 0, ${\mathcal{L}}^{\alpha }T\left(t\right):X\to X$ is bounded, and

$\parallel {\mathcal{L}}^{\alpha }T\left(t\right)\parallel \le {C}_{\alpha }{t}^{-\alpha }{e}^{-\delta t},$

where δ > 0 and C α > 0 are constants only depending on α,

1. (4)

the X α -norm can be defined by

$\parallel x{\parallel }_{{X}_{\alpha }}=\parallel {\mathcal{L}}^{\alpha }x{\parallel }_{X},$
(2.2)
2. (5)

if $\mathcal{L}$ is symmetric, for any α, β R1 we have

$<{\mathcal{L}}^{\alpha }u,v{>}_{X}=<{\mathcal{L}}^{\alpha -\beta }u,{\mathcal{L}}^{\beta }v{>}_{X}.$

## 3 Main results

Let H and H1 be the spaces defined as follows:

$H={L}^{2}\left(\mathrm{\Omega }\right),\phantom{\rule{1em}{0ex}}{H}_{1}=\left\{u\in {H}^{4}\left(\mathrm{\Omega }\right):u{\mid }_{\partial \mathrm{\Omega }}=\mathrm{\Delta }u{\mid }_{\partial \mathrm{\Omega }}=0\right\}.$
(3.1)

We define the operators L: H1H and G: H1H by

$\left\{\begin{array}{c}\hfill Lu=-\beta {\mathrm{\Delta }}^{2}u+\mathrm{\Delta }u\hfill \\ \hfill G\left(u\right)=-{u}^{3}+u,\hfill \end{array}\right\$
(3.2)

Thus, the extended Fisher-Kolmogorov equation (1.1) can be written into the abstract form (2.1). It is well known that the linear operator L: H1H given by (3.2) is a sectorial operator and $\mathcal{L}=-L$. The space D(-L) = H1 is the same as (3.1), ${H}_{\frac{1}{2}}$ is given by ${H}_{\frac{1}{2}}$ = closure of H1 in H2(Ω) and H k = H2k(Ω) ∩ H1 for k ≥ 1.

Before the main result in this article is given, we show the following theorem, which provides the existence of global attractors of the extended Fisher-Kolmogorov equation (1.1) in H.

Theorem 3.1 The extended Fisher-Kolmogorov equation (1.1) has a global attractor in H and a global solution

$u\in C\left(\left[0,\mathrm{\infty }\right),{H}_{\frac{1}{2}}\right)\cap {H}^{1}\left(\left[0,\mathrm{\infty }\right),H\right).$

Proof. Clearly, L = -β Δ2 + Δ: H1H is a sectorial operator, and $G:{H}_{\frac{1}{2}}\to H$ is a compact mapping.

We define functional $I:{H}_{\frac{1}{2}}\to R$, as

$I\left(u\right)=\frac{1}{2}{\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}-\mid \nabla u{\mid }^{2}+{u}^{2}-\frac{1}{2}{u}^{4}\right)dx,$

which satisfies DI(u) = Lu + G(u).

$\begin{array}{c}I\left(u\right)=\frac{1}{2}{\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}-\mid \nabla u{\mid }^{2}+{u}^{2}-\frac{1}{2}{u}^{4}\right)dx\\ \le \frac{1}{2}{\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}+{u}^{2}-\frac{1}{2}{u}^{4}\right)dx\\ \le \frac{1}{2}{\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}+1\right)dx,\\ I\left(u\right)\le -{\beta }_{1}\parallel u\mid {\mid }_{{H}_{\frac{1}{2}}}^{2}+{\beta }_{2},\end{array}$
(3.3)

which implies condition (1) of Lemma 2.3.

$\begin{array}{c}={\int }_{\mathrm{\Omega }}\left(-\beta u{\mathrm{\Delta }}^{2}u+u\mathrm{\Delta }u+{u}^{2}-{u}^{4}\right)dx\\ ={\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}-\mid \nabla u{\mid }^{2}+{u}^{2}-{u}^{4}\right)dx\\ \le {\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}+{u}^{2}-{u}^{4}\right)dx\\ \le {\int }_{\mathrm{\Omega }}\left(-\beta \mid \mathrm{\Delta }u{\mid }^{2}+1\right)dx,\end{array}$
$\le -{C}_{1}\parallel u{\parallel }_{{H}_{\frac{1}{2}}}^{2}+{C}_{2},$
(3.4)

which implies condition (2) of Lemma 2.3.

This theorem follows from (3.3), (3.4), and Lemma 2.3.

The main result in this article is given by the following theorem, which provides the existence of global attractors of the extended Fisher-Kolmogorov equation (1.1) in any k th-order space H k .

Theorem 3.2 For any α ≥ 0 the extended Fisher-Kolmogorov equation (1.1) has a global attractor $\mathcal{A}$ in H α , and $\mathcal{A}$ attracts any bounded set of H α in the H α -norm.

Proof. From Theorem 3.1, we know that the solution of system (1.1) is a global weak solution for any φ H. Hence, the solution u(t, φ) of system (1.1) can be written as

$u\left(t,\phi \right)={e}^{tL}\phi +{\int }_{0}^{t}{e}^{\left(t-\tau \right)L}G\left(u\right)d\tau .$
(3.5)

Next, according to Lemma 2.2, we prove Theorem 3.2 in the following five steps.

Step 1. We prove that for any bounded set $U\subset {H}_{\frac{1}{2}}$ there is a constant C > 0 such that the solution u(t, φ) of system (1.1) is uniformly bounded by the constant C for any φ U and t ≥ 0. To do that, we firstly check that system (1.1) has a global Lyapunov function as follows:

$F\left(u\right)=\frac{1}{2}{\int }_{\mathrm{\Omega }}\left(\beta \mid \mathrm{\Delta }u{\mid }^{2}+\mid \nabla u{\mid }^{2}-{u}^{2}+\frac{1}{2}{u}^{4}\right)dx,$
(3.6)

In fact, if u(t, ·) is a strong solution of system (1.1), we have

$\frac{d}{dt}F\left(u\left(t,\phi \right)\right)=}_{H}.$
(3.7)

By (3.2) and (3.6), we get

$\frac{du}{dt}=Lu+G\left(u\right)=-DF\left(u\right).$
(3.8)

Hence, it follows from (3.7) and (3.8) that

$\frac{dF\left(u\right)}{dt}=}_{H}=-\parallel DF\left(u\right){\parallel }_{H}^{2},$
(3.9)

which implies that (3.6) is a Lyapunov function.

Integrating (3.9) from 0 to t gives

$F\left(u\left(t,\phi \right)\right)=-{\int }_{0}^{t}\parallel DF\left(u\right){\parallel }_{H}^{2}dt+F\left(\phi \right).$
(3.10)

Using (3.6), we have

$\begin{array}{c}F\left(u\right)=\frac{1}{2}{\int }_{\mathrm{\Omega }}\left(\beta \mid \mathrm{\Delta }u{\mid }^{2}+\mid \nabla u{\mid }^{2}-{u}^{2}+\frac{1}{2}{u}^{4}\right)dx\\ \ge \frac{1}{2}{\int }_{\mathrm{\Omega }}\left(\beta \mid \mathrm{\Delta }u{\mid }^{2}-{u}^{2}+\frac{1}{2}{u}^{4}\right)dx\\ \ge \frac{1}{2}{\int }_{\mathrm{\Omega }}\left(\beta \mid \mathrm{\Delta }u{\mid }^{2}-1\right)dx\\ \ge {C}_{1}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx-{C}_{2}.\end{array}$

Combining with (3.10) yields

$\begin{array}{c}{C}_{1}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx-{C}_{2}\le -{\int }_{0}^{t}\parallel DF\left(u\right){\parallel }_{H}^{2}dt+F\left(\phi \right),\\ {C}_{1}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx+{\int }_{0}^{t}\parallel DF\left(u\right){\parallel }_{H}^{2}dt\le F\left(\phi \right)+{C}_{2},\\ {\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx\le C,\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U,\end{array}$

which implies

$\parallel u\left(t,\phi \right){\parallel }_{{H}_{\frac{1}{2}}}\le C.\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U\subset {H}_{\frac{1}{2}},$
(3.11)

where C1, C2, and C are positive constants, and C only depends on φ.

Step 2. We prove that for any bounded set $U\subset {H}_{\alpha }\left(\frac{1}{2}\le \alpha <1\right)$ there exists C > 0 such that

$\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}\le C,\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U,\alpha <1.$
(3.12)

By ${H}_{\frac{1}{2}}\left(\mathrm{\Omega }\right)↪{L}^{6}\left(\mathrm{\Omega }\right)$, we have

$\begin{array}{c}\phantom{\rule{1em}{0ex}}\parallel G\left(u\right){\parallel }_{H}^{2}={\int }_{\mathrm{\Omega }}\mid G\left(u\right){\mid }^{2}dx={\int }_{\mathrm{\Omega }}\mid u-{u}^{3}{\mid }^{2}dx={\int }_{\mathrm{\Omega }}\mid {u}^{2}-2{u}^{4}+{u}^{6}\mid dx\\ \le {\int }_{\mathrm{\Omega }}\left(\mid u{\mid }^{2}+2\mid u{\mid }^{4}+\mid u{\mid }^{6}\right)dx\le C\left({\int }_{\mathrm{\Omega }}\mid u{\mid }^{6}dx+1\right)\le C\left(\parallel u{\parallel }_{{H}_{\frac{1}{2}}}^{6}+1\right).\end{array}$

which implies that $G:{H}_{\frac{1}{2}}\to H$ is bounded.

Hence, it follows from (2.2) and (3.5) that

$\begin{array}{c}\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}=\parallel {e}^{tL}\phi +{\int }_{0}^{t}{e}^{\left(t-\tau \right)L}g\left(u\right)d\tau {\parallel }_{{H}_{\alpha }}\le \parallel \phi {\parallel }_{{H}_{\alpha }}+{\int }_{0}^{t}\parallel {\left(-L\right)}^{\alpha }{e}^{\left(t-\tau \right)L}G\left(u\right){\parallel }_{H}d\tau \\ \le \parallel \phi {\parallel }_{{H}_{\alpha }}+{\int }_{0}^{t}\parallel {\left(-L\right)}^{\alpha }{e}^{\left(t-\tau \right)L}\parallel \parallel G\left(u\right){\parallel }_{H}d\tau \\ \le \parallel \phi {\parallel }_{{H}_{\alpha }}+C{\int }_{0}^{t}\parallel {\left(-L\right)}^{\alpha }{e}^{\left(t-\tau \right)L}\parallel \left(\parallel u{\parallel }_{{H}_{\frac{1}{2}}}^{6}+1\right)d\tau \\ \le \parallel \phi {\parallel }_{{H}_{\alpha }}+C{\int }_{0}^{t}{\tau }^{\beta }{e}^{-\delta t}d\tau \le C,\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U\subset {H}_{\alpha },\end{array}$

where β = α(0 < β < 1). Hence, (3.12) holds.

Step 3. We prove that for any bounded set $U\subset {H}_{\alpha }\left(1\le \alpha <\frac{3}{2}\right)$ there exists C > 0 such that

$\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}\le C,\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U\subset {H}_{\alpha },\alpha <\frac{3}{2}.$
(3.13)

In fact, by the embedding theorems of fractional order spaces :

${H}^{2}\left(\mathrm{\Omega }\right)↪{W}^{1,4}\left(\mathrm{\Omega }\right),\phantom{\rule{1em}{0ex}}{H}^{2}\left(\mathrm{\Omega }\right)↪{H}^{1}\left(\mathrm{\Omega }\right),\phantom{\rule{1em}{0ex}}{H}_{\alpha }↪{C}^{0}\left(\mathrm{\Omega }\right)\cap {H}^{2}\left(\mathrm{\Omega }\right),\phantom{\rule{1em}{0ex}}\alpha \ge \frac{1}{2},$

we have

$\begin{array}{c}\parallel G\left(u\right){\parallel }_{{H}_{\frac{1}{2}}}^{2}={\int }_{\mathrm{\Omega }}\mid {\left(-L\right)}^{\frac{1}{2}}G\left(u\right){\mid }^{2}dx=<{\left(-L\right)}^{\frac{1}{2}}G\left(u\right),\left(-L{\right)}^{\frac{1}{2}}G\left(u\right)>=<\left(-L\right)G\left(u\right),G\left(u\right)>\\ ={\int }_{\mathrm{\Omega }}\left[\left(\beta {\mathrm{\Delta }}^{2}G\left(u\right)-\mathrm{\Delta }G\left(u\right)\right)G\left(u\right)\right]dx\le C{\int }_{\mathrm{\Omega }}\left(\mid \mathrm{\Delta }G\left(u\right){\mid }^{2}+\mid \nabla G\left(u\right){\mid }^{2}\right)dx\\ =C{\int }_{\mathrm{\Omega }}\left(\mid \left(1-3{u}^{2}\right)\nabla u{\mid }^{2}+\mid \mathrm{\Delta }u-6u{\left(\nabla u\right)}^{2}-3{u}^{2}\mathrm{\Delta }u{\mid }^{2}\right)dx\\ \le C{\int }_{\mathrm{\Omega }}\left(\mid u{\mid }^{4}\mid \nabla u{\mid }^{2}+\mid \nabla u{\mid }^{2}+\mid \mathrm{\Delta }u{\mid }^{2}+\mid u{\mid }^{2}\mid \nabla u{\mid }^{4}+\mid u{\mid }^{4}\mid \mathrm{\Delta }u{\mid }^{2}\right)dx\\ \le C{\int }_{\mathrm{\Omega }}\left(su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}\mid \nabla u{\mid }^{2}+\mid \nabla u{\mid }^{2}+\mid \mathrm{\Delta }u{\mid }^{2}+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}\mid \nabla u{\mid }^{4}+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}\mid \mathrm{\Delta }u{\mid }^{2}\right)dx\\ \le C\left[su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}{\int }_{\mathrm{\Omega }}\mid \nabla u{\mid }^{2}dx+{\int }_{\mathrm{\Omega }}\mid \nabla u{\mid }^{2}dx+{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}{\int }_{\mathrm{\Omega }}\mid \nabla u{\mid }^{4}dx+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx\right]\\ \le C\left(\parallel u{\parallel }_{{C}^{0}}^{4}\parallel u{\parallel }_{{H}^{1}}^{2}+\parallel u{\parallel }_{{H}^{1}}^{2}+\parallel u{\parallel }_{{H}^{2}}^{2}+\parallel u{\parallel }_{{C}^{0}}^{2}\parallel u{\parallel }_{{W}^{1,4}}^{4}+\parallel u{\parallel }_{{C}^{0}}^{4}\parallel u{\parallel }_{{H}^{2}}^{2}\right)\\ \le C\left(\parallel u{\parallel }_{{H}_{\alpha }}^{4}\parallel u{\parallel }_{{H}^{1}}^{2}+\parallel u{\parallel }_{{H}^{1}}^{2}+\parallel u{\parallel }_{{H}^{2}}^{2}+\parallel u{\parallel }_{{H}_{\alpha }}^{2}\parallel u{\parallel }_{{W}^{1,4}}^{4}+\parallel u{\parallel }_{{H}_{\alpha }}^{4}\parallel u{\parallel }_{{H}^{2}}^{2}\right)\\ \le C\left(\parallel u{\parallel }_{{H}_{\alpha }}^{6}+\parallel u{\parallel }_{{H}_{\alpha }}^{2}\right),\end{array}$

which implies

$G:{H}_{\alpha }\to {H}_{\frac{1}{2}}\phantom{\rule{1em}{0ex}}\mathsf{\text{is}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{bounded}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{for}}\phantom{\rule{2.77695pt}{0ex}}\alpha \ge \frac{1}{2}.$
(3.14)

Therefore, it follows from (3.12) and (3.14) that

$\parallel G\left(u\right){\parallel }_{{H}_{\frac{1}{2}}}
(3.15)

Then, using same method as that in Step 2, we get from (3.15) that

$\begin{array}{c}\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}=\parallel {e}^{tL}\phi +{\int }_{0}^{t}{e}^{\left(t-\tau \right)L}G\left(u\right)d\tau {\parallel }_{{H}_{\alpha }}\le \parallel \phi {\parallel }_{{H}_{\alpha }}+{\int }_{0}^{t}\parallel {\left(-L\right)}^{\alpha }{e}^{\left(t-\tau \right)L}G\left(u\right){\parallel }_{H}d\tau \\ \le \parallel \phi {\parallel }_{{H}_{\alpha }}+C{\int }_{0}^{t}\parallel {\left(-L\right)}^{\alpha -\frac{1}{2}}{e}^{\left(t-\tau \right)L}\parallel \parallel G\left(u\right){\parallel }_{{H}_{\frac{1}{2}}}d\tau \\ \le \parallel \phi {\parallel }_{{H}_{\alpha }}+C{\int }_{0}^{t}{\tau }^{\beta }{e}^{-\delta t}d\tau \le C,\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U\subset {H}_{\alpha },\end{array}$

where $\beta =\alpha -\frac{1}{2}\left(0<\beta <1\right)$. Hence, (3.13) holds.

Step 4. We prove that for any bounded set U H α (α ≥ 0) there exists C > 0 such that

$\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}\le C,\phantom{\rule{1em}{0ex}}\forall t\ge 0,\phi \in U\subset {H}_{\alpha },\alpha \ge 0.$
(3.16)

In fact, by the embedding theorems of fractional order spaces :

$\begin{array}{c}{H}^{4}\left(\mathrm{\Omega }\right)↪{H}^{3}\left(\mathrm{\Omega }\right)↪{H}^{2}\left(\mathrm{\Omega }\right),\phantom{\rule{1em}{0ex}}{H}^{4}\left(\mathrm{\Omega }\right)↪{W}^{2,4}\left(\mathrm{\Omega }\right),\\ {H}_{\alpha }↪{C}^{1}\left(\mathrm{\Omega }\right)\cap {H}^{4}\left(\mathrm{\Omega }\right),\phantom{\rule{1em}{0ex}}\alpha \ge 1.\end{array}$

we have

$\begin{array}{c}\parallel G\left(u\right){\parallel }_{{H}_{1}}^{2}=\parallel \left(-L\right)G\left(u\right){\parallel }^{2}\le C{\int }_{\mathrm{\Omega }}\left(\mid {\mathrm{\Delta }}^{2}G\left(u\right){\mid }^{2}+\phantom{\rule{0.25em}{0ex}}\mid \mathrm{\Delta }G\left(u\right){\mid }^{2}\right)dx\\ \le C{\int }_{\mathrm{\Omega }}\left[\left(\mid {\mathrm{\Delta }}^{2}u\mid +30\mid \nabla u{\mid }^{2}\mid \mathrm{\Delta }u\mid +12\mid u\parallel \mathrm{\Delta }u{\mid }^{2}+18\mid u\parallel \nabla u\parallel \nabla \mathrm{\Delta }u\mid +3\mid u{\mid }^{2}\mid {\mathrm{\Delta }}^{2}u\mid {\right)}^{2}\\ +\left(\mid \mathrm{\Delta }u\mid +6\mid u\parallel \nabla u{\mid }^{2}+3\mid u{\mid }^{2}\mid \mathrm{\Delta }u\mid {\right)}^{2}\right]dx\\ \le C{\int }_{\mathrm{\Omega }}\left(\mid {\mathrm{\Delta }}^{2}u{\mid }^{2}+\mid \nabla u{\mid }^{4}\mid \mathrm{\Delta }u{\mid }^{2}+\mid u{\mid }^{2}\mid \mathrm{\Delta }u{\mid }^{4}+\mid u{\mid }^{2}\mid \nabla u{\mid }^{2}\mid \nabla \mathrm{\Delta }u{\mid }^{2}+\mid u{\mid }^{4}\mid {\mathrm{\Delta }}^{2}u{\mid }^{2}\\ +\mid \mathrm{\Delta }u{\mid }^{2}+\mid u{\mid }^{2}\mid \nabla u{\mid }^{4}+\mid u{\mid }^{4}\mid \mathrm{\Delta }u{\mid }^{2}\right)dx\\ \le C{\int }_{\mathrm{\Omega }}\left(\mid {\mathrm{\Delta }}^{2}u{\mid }^{2}+su{p}_{x\in \mathrm{\Omega }}\mid \nabla u{\mid }^{4}\mid \mathrm{\Delta }u{\mid }^{2}+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}\mid \mathrm{\Delta }u{\mid }^{4}+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}su{p}_{x\in \mathrm{\Omega }}\mid \nabla u{\mid }^{2}\mid \nabla \mathrm{\Delta }u{\mid }^{2}\\ +su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}\mid {\mathrm{\Delta }}^{2}u{\mid }^{2}+\mid \mathrm{\Delta }u{\mid }^{2}+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}su{p}_{x\in \mathrm{\Omega }}\mid \nabla u{\mid }^{4}+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}\mid \mathrm{\Delta }u{\mid }^{2}\right)dx\\ \le C\left[{\int }_{\mathrm{\Omega }}\mid {\mathrm{\Delta }}^{2}u{\mid }^{2}dx+su{p}_{x\in \mathrm{\Omega }}\mid \nabla u{\mid }^{4}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{4}dx+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}su{p}_{x\in \mathrm{\Omega }}\mid \nabla u{\mid }^{2}{\int }_{\mathrm{\Omega }}\mid \nabla \mathrm{\Delta }u{\mid }^{2}dx\\ +su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}{\int }_{\mathrm{\Omega }}\mid {\mathrm{\Delta }}^{2}u{\mid }^{2}dx+{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{2}su{p}_{x\in \mathrm{\Omega }}\mid \nabla u{\mid }^{4}{\int }_{\mathrm{\Omega }}dx+su{p}_{x\in \mathrm{\Omega }}\mid u{\mid }^{4}{\int }_{\mathrm{\Omega }}\mid \mathrm{\Delta }u{\mid }^{2}dx\right]\\ \le C\left(\parallel u{\parallel }_{{H}^{4}}^{2}+\parallel u{\parallel }_{{C}^{1}}^{4}\parallel u{\parallel }_{{H}^{2}}^{2}+\parallel u{\parallel }_{{C}^{0}}^{2}\parallel u{\parallel }_{{W}^{2,4}}^{4}+\parallel u{\parallel }_{{C}^{0}}^{2}\parallel u{\parallel }_{{C}^{1}}^{2}\parallel u{\parallel }_{{H}^{3}}^{2}\\ +\parallel u{\parallel }_{{C}^{0}}^{4}\parallel u{\parallel }_{{H}^{4}}^{2}+\parallel u{\parallel }_{{H}^{2}}^{2}+\parallel u{\parallel }_{{C}^{0}}^{2}\parallel u{\parallel }_{{C}^{1}}^{4}+\parallel u{\parallel }_{{C}^{0}}^{4}\parallel u{\parallel }_{{H}^{2}}^{2}\right)\\ \le C\left(\parallel u{\parallel }_{{H}^{4}}^{2}+\parallel u{\parallel }_{{H}_{\alpha }}^{4}\parallel u{\parallel }_{{H}^{2}}^{2}+\parallel u{\parallel }_{{H}_{\alpha }}^{2}\parallel u{\parallel }_{{W}^{2,4}}^{4}+\parallel u{\parallel }_{{H}_{\alpha }}^{4}\parallel u{\parallel }_{{H}^{3}}^{2}\\ +\parallel u{\parallel }_{{H}_{\alpha }}^{4}\parallel u{\parallel }_{{H}^{4}}^{2}+\parallel u{\parallel }_{{H}^{2}}^{2}+\parallel u{\parallel }_{{H}_{\alpha }}^{6}+\parallel u{\parallel }_{{H}_{\alpha }}^{4}\parallel u{\parallel }_{{H}^{2}}^{2}\right)\\ \le C\left(\parallel u{\parallel }_{{H}_{\alpha }}^{6}+\parallel u{\parallel }_{{H}_{\alpha }}^{2}\right)\end{array}$

which implies

$G:{H}_{\alpha }\to {H}_{1}\phantom{\rule{1em}{0ex}}\mathsf{\text{is}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{bounded}}\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{for}}\phantom{\rule{2.77695pt}{0ex}}\alpha \ge 1.$
(3.17)

Therefore, it follows from (3.13) and (3.17) that

$\parallel G\left(u\right){\parallel }_{{H}_{1}}
(3.18)

Then, we get from (3.18) that

where β = α - 1(0 < β < 1). Hence, (3.16) holds.

By doing the same procedures as Steps 1-4, we can prove that (3.16) holds for all α ≥ 0.

Step 5. We show that for any α ≥ 0, system (1.1) has a bounded absorbing set in H α . We first consider the case of $\alpha =\frac{1}{2}$.

From Theorem 3.1 we have known that the extended Fisher-Kolmogorov equation possesses a global attractor in H space, and the global attractor of this equation consists of equilibria with their stable and unstable manifolds. Thus, each trajectory has to converge to a critical point. From (3.9) and (3.16), we deduce that for any $\phi \in {H}_{\frac{1}{2}}$ the solution u(t, φ) of system (1.1) converges to a critical point of F. Hence, we only need to prove the following two properties:

1. (1)

$F\left(u\right)\to \mathrm{\infty }⇔\parallel u{\parallel }_{{H}_{\frac{1}{2}}}\to \mathrm{\infty }$,

2. (2)

the set $S=\left\{u\in {H}_{\frac{1}{2}}\mid DF\left(u\right)=0\right\}$ is bounded.

Property (1) is obviously true, we now prove (2) in the following. It is easy to check if DF(u) = 0, u is a solution of the following equation

$\left\{\begin{array}{c}\hfill \beta {\mathrm{\Delta }}^{2}u-\mathrm{\Delta }u-u+{u}^{3}=0,\hfill \\ \hfill u{\mid }_{\partial \mathrm{\Omega }}=0,\phantom{\rule{1em}{0ex}}\mathrm{\Delta }u{\mid }_{\partial \mathrm{\Omega }}=0.\hfill \end{array}\right\$
(3.19)

Taking the scalar product of (3.19) with u, then we derive that

${\int }_{\mathrm{\Omega }}\left(\beta \mid \mathrm{\Delta }u{\mid }^{2}+\mid \nabla u{\mid }^{2}-\mid u{\mid }^{2}+\mid u{\mid }^{4}\right)dx=0.$

Using Hölder inequality and the above inequality, we have

${\int }_{\mathrm{\Omega }}\left(\mid \mathrm{\Delta }u{\mid }^{2}+\mid \nabla u{\mid }^{2}+\mid u{\mid }^{4}\right)dx\le C,$

where C > 0 is a constant. Thus, property (2) is proved.

Now, we show that system (1.1) has a bounded absorbing set in H α for any $\alpha \ge \frac{1}{2}$, i.e., for any bounded set U H α there are T > 0 and a constant C > 0 independent of φ such that

$\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}\le C,\phantom{\rule{1em}{0ex}}\forall t\ge T,\phi \in U.$
(3.20)

From the above discussion, we know that (3.20) holds as $\alpha =\frac{1}{2}$. By (3.5) we have

$u\left(t,\phi \right)={e}^{\left(t-T\right)L}u\left(T,\phi \right)+{\int }_{0}^{t}{e}^{\left(t-\tau \right)L}G\left(u\right)d\tau .$
(3.21)

Let $B\subset {H}_{\frac{1}{2}}$ be the bounded absorbing set of system (1.1), and T0 > 0 such that

$u\left(t,\phi \right)\in B,\phantom{\rule{1em}{0ex}}\forall t\ge {T}_{0},\phi \in U\subset {H}_{\alpha }\left(\alpha \ge \frac{1}{2}\right).$
(3.22)

It is well known that

$\parallel {e}^{tL}\parallel \le C{e}^{-t{\lambda }_{1}^{2}},$

where λ1 > 0 is the first eigenvalue of the equation

$\left\{\begin{array}{c}\hfill \beta {\mathrm{\Delta }}^{2}u-\mathrm{\Delta }u=\lambda u,\hfill \\ \hfill u{\mid }_{\partial \mathrm{\Omega }}=0,\phantom{\rule{1em}{0ex}}\mathrm{\Delta }u{\mid }_{\partial \mathrm{\Omega }}=0.\hfill \end{array}\right\$

Hence, for any given T > 0 and $\phi \in U\subset {H}_{\alpha }\left(\alpha \ge \frac{1}{2}\right)$. We have

$\parallel {e}^{\left(t-\tau \right)L}u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}=\parallel {\left(-L\right)}^{\alpha }{e}^{\left(t-\tau \right)L}u\left(t,\phi \right){\parallel }_{H}\to 0,\phantom{\rule{1em}{0ex}}as\phantom{\rule{1em}{0ex}}t\to \mathrm{\infty }.$
(3.23)

From (3.21),(3.22) and Lemma 2.4, for any $\frac{1}{2}\le \alpha <1$ we get that

$\begin{array}{c}\parallel u\left(t,\phi \right){\parallel }_{{H}_{\alpha }}\le \parallel {e}^{\left(t-{T}_{0}\right)L}u\left({T}_{0},\phi \right){\parallel }_{{H}_{\alpha }}+{\int }_{{T}_{0}}^{t}\parallel {\left(-L\right)}^{\alpha }{e}^{\left(t-\tau \right)L}G\left(u\right)\parallel d\tau \\ \le \parallel {e}^{\left(t-{T}_{0}\right)L}u\left({T}_{0},\phi \right){\parallel }_{{H}_{\alpha }}+C{\int }_{0}^{t-{T}_{0}}{\tau }^{-\alpha }{e}^{-{\lambda }_{1}\tau }d\tau ,\end{array}$
(3.24)

where C > 0 is a constant independent of φ.

Then, we infer from (3.23) and (3.24) that (3.20) holds for all $\frac{1}{2}\le \alpha <1$. By the iteration method, we have that (3.20) holds for all $\alpha \ge \frac{1}{2}$.

Finally, this theorem follows from (3.16), (3.20) and Lemma 2.2. The proof is completed.

## References

1. Dee GT, Saarloos W: Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett 1988, 60(25):2641-2644. 10.1103/PhysRevLett.60.2641

2. Saarloos W: Dynamical velocity selection: marginal stability. Phys Rev Lett 1987, 58(24):2571-2574. 10.1103/PhysRevLett.58.2571

3. Saarloos W: Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Phys Rev 1988, 37A(1):211-229.

4. Peletier LA, Troy WC: Spatial patterns described by the extended Fisher-Kolmogorov equation: Kinks. Diff Integral Eqn 1995, 8: 1279-1304.

5. Peletier LA, Troy WC: Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation. J Diff Eqn 1996, 129: 458-508. 10.1006/jdeq.1996.0124

6. Peletier LA, Troy WC: A topological shooting method and the existence of kinds of the extended Fisher-Kolmogorov equation. Topol Methods Nonlinear Anal 1997, 6: 331-355.

7. Peletier LA, Troy WC, VanderVorst RCAM: Stationary solutions of a fourth-order nonlinear diffusion equation. Diff Uravneniya 1995, 31: 327-337.

8. Van der Berg JB: Uniqueness of solutions for the extended Fisher-Kolmogorov equation. C R Acad Sci Paris Ser I 1998, 326: 417-431.

9. Kwapisz J: Uniqueness of the stationary wave for the extended Fisher-Kolmogorov equation. J Diff Eqn 2000, 165: 235-253. 10.1006/jdeq.1999.3750

10. Tersian S, Chaparova J: Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations. J Math Anal Appl 2001, 260: 490-506. 10.1006/jmaa.2001.7470

11. Smets D, Van den Berg JB: Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations. J Differ Eqn 2002, 184(1):78-96. 10.1006/jdeq.2001.4135

12. Li CY: Homoclinic orbits of two classes of fourth order semilinear differential equations with periodic nonlinearity. J Appl Math Comput 2008, 27: 107-116. 10.1007/s12190-008-0045-4

13. Hale JK: Asymptotic Behaviour of Dissipative Systems. American Mathematical Society, Providence 1988.

14. Lu S, Wu H, Zhong CK: Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces. Discrete Contin Dyn Syst 2005, 13(3):701-719.

15. Ma QF, Wang SH, Zhong CK: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ Math J 2002, 51(6):1541-1559. 10.1512/iumj.2002.51.2255

16. Zhong CK, Sun C, Niu M: On the existence of global attractor for a class of infinite dimensional nonlinear dissipative dynamical systems. Chin Ann Math B 2005, 26(3):1-8.

17. Temam R: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. In Appl Math Sci. Volume 68. 2nd edition. Springer, New York; 1997.

18. Zhong CK, Yang M, Sun C: The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equation. J Differ Eqn 2006, 223(2):367-399. 10.1016/j.jde.2005.06.008

19. Nicolaenko B, Scheurer B, Temam R: Some global dynamical properties of a class of pattern formation equations. Commun Part Diff Eqn 1989, 14: 245-297. 10.1080/03605308908820597

20. Ma T, Wang SH: Bifurcation Theory and Applications. World Scietific Series. Nonlinear Sci Ser A Monogr Treatises. World Scientific, Singapore 2005., 153:

21. Ma T, Wang SH: Stability and Bifurcation of Nonlinear Evolution Equations. Science Press, China (in Chinese); 2007.

22. Ma T, Wang SH: Phase Transition Dynamics in Nonlinear Sciences. Springer, New York; 2011:in press.

23. Song LY, Zhang YD, Ma T: Global attractor of the Cahn-Hilliard equation in Hk spaces. J Math Anal Appl 2009, 355: 53-62. 10.1016/j.jmaa.2009.01.035

24. Pazy A: Semigroups of Linear Operators and Applications to Partial Differential Equations. In Appl Math Sci. Volume 44. Springer; 2006.

## Acknowledgements

The author is very grateful to the anonymous referees whose careful reading of the manuscript and valuable comments enhanced presentation of the manuscript. Foundation item: the National Natural Science Foundation of China (No. 11071177).

## Author information

Authors

### Corresponding author

Correspondence to Hong Luo.

### Competing interests

The author declares that they have no competing interests.

## Rights and permissions

Reprints and Permissions

Luo, H. Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces. Bound Value Probl 2011, 39 (2011). https://doi.org/10.1186/1687-2770-2011-39 