- Research
- Open Access
- Published:
Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces
Boundary Value Problems volume 2011, Article number: 39 (2011)
Abstract
The long-time behavior of solution to extended Fisher-Kolmogorov equation is considered in this article. Using an iteration procedure, regularity estimates for the linear semigroups and a classical existence theorem of global attractor, we prove that the extended Fisher-Kolmogorov equation possesses a global attractor in Sobolev space Hk for all k > 0, which attracts any bounded subset of Hk (Ω) in the Hk -norm.
2000 Mathematics Subject Classification: 35B40; 35B41; 35K25; 35K30.
1 Introduction
This article is concerned with the following initial-boundary problem of extended Fisher-Kolmogorov equation involving an unknown function u = u(x, t):
where β > 0 is given, Δ is the Laplacian operator, and Ω denotes an open bounded set of Rn(n = 1, 2, 3) with smooth boundary ∂Ω.
The extended Fisher-Kolmogorov equation proposed by Dee and Saarloos [1–3] in 1987-1988, which serves as a model in studies of pattern formation in many physical, chemical, or biological systems, also arises in the theory of phase transitions near Lifshitz points. The extended Fisher-Kolmogorov equation (1.1) have extensively been studied during the last decades. In 1995-1998, Peletier and Troy [4–7] studied spatial patterns, the existence of kinds and stationary solutions of the extended Fisher-Kolmogorov equation (1.1) in their articles. Van der Berg and Kwapisz [8, 9] proved uniqueness of solutions for the extended Fisher-Kolmogorov equation in 1998-2000. Tersian and Chaparova [10], Smets and Van den Berg [11], and Li [12] catch Periodic and homoclinic solution of Equation (1.1).
The global asymptotical behaviors of solutions and existence of global attractors are important for the study of the dynamical properties of general nonlinear dissipative dynamical systems. So, many authors are interested in the existence of global attractors such as Hale, Temam, among others [13–23].
In this article, we shall use the regularity estimates for the linear semigroups, combining with the classical existence theorem of global attractors, to prove that the extended Fisher-Kolmogorov equation possesses, in any k th differentiable function spaces Hk(Ω), a global attractor, which attracts any bounded set of Hk(Ω) in Hk-norm. The basic idea is an iteration procedure which is from recent books and articles [20–23].
2 Preliminaries
Let X and X1 be two Banach spaces, X1 ⊂ X a compact and dense inclusion. Consider the abstract nonlinear evolution equation defined on X, given by
where u(t) is an unknown function, L: X1 → X a linear operator, and G: X1 → X a nonlinear operator.
A family of operators S(t): X → X(t ≥ 0) is called a semigroup generated by (2.1) if it satisfies the following properties:
-
(1)
S(t): X → X is a continuous map for any t ≥ 0,
-
(2)
S(0) = id: X → X is the identity,
-
(3)
S(t + s) = S(t) · S(s), ∀t, s ≥ 0. Then, the solution of (2.1) can be expressed as
Next, we introduce the concepts and definitions of invariant sets, global attractors, and ω-limit sets for the semigroup S(t).
Definition 2.1 Let S(t) be a semigroup defined on X. A set Σ ⊂ X is called an invariant set of S(t) if S(t)Σ = Σ, ∀t ≥ 0. An invariant set Σ is an attractor of S(t) if Σ is compact, and there exists a neighborhood U ⊂ X of Σ such that for any u0 ∈ U,
In this case, we say that Σ attracts U. Especially, if Σ attracts any bounded set of X, Σ is called a global attractor of S(t) in X.
For a set D ⊂ X, we define the ω-limit set of D as follows:
where the closure is taken in the X-norm. Lemma 2.1 is the classical existence theorem of global attractor by Temam [17].
Lemma 2.1 Let S(t): X → X be the semigroup generated by (2.1). Assume the following conditions hold:
-
(1)
S(t) has a bounded absorbing set B ⊂ X, i.e., for any bounded set A ⊂ X there exists a time t A ≥ 0 such that S(t)u0 ∈ B, ∀u0 ∈ A and t > t A ;
-
(2)
S(t) is uniformly compact, i.e., for any bounded set U ⊂ X and some T > 0 sufficiently large, the set is compact in X.
Then the ω-limit set of B is a global attractor of (2.1), and is connected providing B is connected.
Note that we used to assume that the linear operator L in (2.1) is a sectorial operator which generates an analytic semigroup etL. It is known that there exists a constant λ ≥ 0 such that L - λI generates the fractional power operators and fractional order spaces X α for α ∈ R1, where . Without loss of generality, we assume that L generates the fractional power operators and fractional order spaces X α as follows:
where is the domain of . By the semigroup theory of linear operators [24], we know that X β ⊂ X α is a compact inclusion for any β > α.
Thus, Lemma 2.1 can equivalently be expressed in Lemma 2.2 [20–23].
Lemma 2.2 Let u(t, u0) = S(t)u0(u0 ∈ X, t ≥ 0) be a solution of (2.1) and S(t) be the semigroup generated by (2.1). Let X α be the fractional order space generated by L. Assume:
-
(1)
for some α ≥ 0, there is a bounded set B ⊂ X α such that for any u0 ∈ X α there exists with
-
(2)
there is a β > α, for any bounded set U ⊂ X β there are T > 0 and C > 0 such that
Then, Equation (2.1) has a global attractor which attracts any bounded set of X α in the X α -norm.
For Equation (2.1) with variational characteristic, we have the following existence theorem of global attractor [20, 22].
Lemma 2.3 Let L: X1 → X be a sectorial operator, X α = D((-L) α) and G: X α → X(0 < α < 1) be a compact mapping. If
-
(1)
there is a functional F: X α → R such that DF = L + G and ,
-
(2)
,
then
-
(1)
Equation (2.1) has a global solution
-
(2)
Equation (2.1) has a global attractor which attracts any bounded set of X, where DF is a derivative operator of F, and β1, β2, C1, C2 are positive constants.
For sectorial operators, we also have the following properties which can be found in [24].
Lemma 2.4 Let L: X1 → X be a sectorial operator which generates an analytic semigroup T(t) = etL. If all eigenvalues λ of L satisfy Reλ < -λ0 for some real number λ0 > 0, then for we have
-
(1)
T(t): X → X α is bounded for all α ∈ R1 and t > 0,
-
(2)
,
-
(3)
for each t > 0, is bounded, and
where δ > 0 and C α > 0 are constants only depending on α,
-
(4)
the X α -norm can be defined by
(2.2) -
(5)
if is symmetric, for any α, β ∈ R1 we have
3 Main results
Let H and H1 be the spaces defined as follows:
We define the operators L: H1 → H and G: H1 → H by
Thus, the extended Fisher-Kolmogorov equation (1.1) can be written into the abstract form (2.1). It is well known that the linear operator L: H1 → H given by (3.2) is a sectorial operator and . The space D(-L) = H1 is the same as (3.1), is given by = closure of H1 in H2(Ω) and H k = H2k(Ω) ∩ H1 for k ≥ 1.
Before the main result in this article is given, we show the following theorem, which provides the existence of global attractors of the extended Fisher-Kolmogorov equation (1.1) in H.
Theorem 3.1 The extended Fisher-Kolmogorov equation (1.1) has a global attractor in H and a global solution
Proof. Clearly, L = -β Δ2 + Δ: H1 → H is a sectorial operator, and is a compact mapping.
We define functional , as
which satisfies DI(u) = Lu + G(u).
which implies condition (1) of Lemma 2.3.
which implies condition (2) of Lemma 2.3.
This theorem follows from (3.3), (3.4), and Lemma 2.3.
The main result in this article is given by the following theorem, which provides the existence of global attractors of the extended Fisher-Kolmogorov equation (1.1) in any k th-order space H k .
Theorem 3.2 For any α ≥ 0 the extended Fisher-Kolmogorov equation (1.1) has a global attractor in H α , and attracts any bounded set of H α in the H α -norm.
Proof. From Theorem 3.1, we know that the solution of system (1.1) is a global weak solution for any φ ∈ H. Hence, the solution u(t, φ) of system (1.1) can be written as
Next, according to Lemma 2.2, we prove Theorem 3.2 in the following five steps.
Step 1. We prove that for any bounded set there is a constant C > 0 such that the solution u(t, φ) of system (1.1) is uniformly bounded by the constant C for any φ ∈ U and t ≥ 0. To do that, we firstly check that system (1.1) has a global Lyapunov function as follows:
In fact, if u(t, ·) is a strong solution of system (1.1), we have
By (3.2) and (3.6), we get
Hence, it follows from (3.7) and (3.8) that
which implies that (3.6) is a Lyapunov function.
Integrating (3.9) from 0 to t gives
Using (3.6), we have
Combining with (3.10) yields
which implies
where C1, C2, and C are positive constants, and C only depends on φ.
Step 2. We prove that for any bounded set there exists C > 0 such that
By , we have
which implies that is bounded.
Hence, it follows from (2.2) and (3.5) that
where β = α(0 < β < 1). Hence, (3.12) holds.
Step 3. We prove that for any bounded set there exists C > 0 such that
In fact, by the embedding theorems of fractional order spaces [24]:
we have
which implies
Therefore, it follows from (3.12) and (3.14) that
Then, using same method as that in Step 2, we get from (3.15) that
where . Hence, (3.13) holds.
Step 4. We prove that for any bounded set U ⊂ H α (α ≥ 0) there exists C > 0 such that
In fact, by the embedding theorems of fractional order spaces [24]:
we have
which implies
Therefore, it follows from (3.13) and (3.17) that
Then, we get from (3.18) that
where β = α - 1(0 < β < 1). Hence, (3.16) holds.
By doing the same procedures as Steps 1-4, we can prove that (3.16) holds for all α ≥ 0.
Step 5. We show that for any α ≥ 0, system (1.1) has a bounded absorbing set in H α . We first consider the case of .
From Theorem 3.1 we have known that the extended Fisher-Kolmogorov equation possesses a global attractor in H space, and the global attractor of this equation consists of equilibria with their stable and unstable manifolds. Thus, each trajectory has to converge to a critical point. From (3.9) and (3.16), we deduce that for any the solution u(t, φ) of system (1.1) converges to a critical point of F. Hence, we only need to prove the following two properties:
-
(1)
,
-
(2)
the set is bounded.
Property (1) is obviously true, we now prove (2) in the following. It is easy to check if DF(u) = 0, u is a solution of the following equation
Taking the scalar product of (3.19) with u, then we derive that
Using Hölder inequality and the above inequality, we have
where C > 0 is a constant. Thus, property (2) is proved.
Now, we show that system (1.1) has a bounded absorbing set in H α for any , i.e., for any bounded set U ⊂ H α there are T > 0 and a constant C > 0 independent of φ such that
From the above discussion, we know that (3.20) holds as . By (3.5) we have
Let be the bounded absorbing set of system (1.1), and T0 > 0 such that
It is well known that
where λ1 > 0 is the first eigenvalue of the equation
Hence, for any given T > 0 and . We have
From (3.21),(3.22) and Lemma 2.4, for any we get that
where C > 0 is a constant independent of φ.
Then, we infer from (3.23) and (3.24) that (3.20) holds for all . By the iteration method, we have that (3.20) holds for all .
Finally, this theorem follows from (3.16), (3.20) and Lemma 2.2. The proof is completed.
References
Dee GT, Saarloos W: Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett 1988, 60(25):2641-2644. 10.1103/PhysRevLett.60.2641
Saarloos W: Dynamical velocity selection: marginal stability. Phys Rev Lett 1987, 58(24):2571-2574. 10.1103/PhysRevLett.58.2571
Saarloos W: Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Phys Rev 1988, 37A(1):211-229.
Peletier LA, Troy WC: Spatial patterns described by the extended Fisher-Kolmogorov equation: Kinks. Diff Integral Eqn 1995, 8: 1279-1304.
Peletier LA, Troy WC: Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation. J Diff Eqn 1996, 129: 458-508. 10.1006/jdeq.1996.0124
Peletier LA, Troy WC: A topological shooting method and the existence of kinds of the extended Fisher-Kolmogorov equation. Topol Methods Nonlinear Anal 1997, 6: 331-355.
Peletier LA, Troy WC, VanderVorst RCAM: Stationary solutions of a fourth-order nonlinear diffusion equation. Diff Uravneniya 1995, 31: 327-337.
Van der Berg JB: Uniqueness of solutions for the extended Fisher-Kolmogorov equation. C R Acad Sci Paris Ser I 1998, 326: 417-431.
Kwapisz J: Uniqueness of the stationary wave for the extended Fisher-Kolmogorov equation. J Diff Eqn 2000, 165: 235-253. 10.1006/jdeq.1999.3750
Tersian S, Chaparova J: Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations. J Math Anal Appl 2001, 260: 490-506. 10.1006/jmaa.2001.7470
Smets D, Van den Berg JB: Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations. J Differ Eqn 2002, 184(1):78-96. 10.1006/jdeq.2001.4135
Li CY: Homoclinic orbits of two classes of fourth order semilinear differential equations with periodic nonlinearity. J Appl Math Comput 2008, 27: 107-116. 10.1007/s12190-008-0045-4
Hale JK: Asymptotic Behaviour of Dissipative Systems. American Mathematical Society, Providence 1988.
Lu S, Wu H, Zhong CK: Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces. Discrete Contin Dyn Syst 2005, 13(3):701-719.
Ma QF, Wang SH, Zhong CK: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ Math J 2002, 51(6):1541-1559. 10.1512/iumj.2002.51.2255
Zhong CK, Sun C, Niu M: On the existence of global attractor for a class of infinite dimensional nonlinear dissipative dynamical systems. Chin Ann Math B 2005, 26(3):1-8.
Temam R: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. In Appl Math Sci. Volume 68. 2nd edition. Springer, New York; 1997.
Zhong CK, Yang M, Sun C: The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equation. J Differ Eqn 2006, 223(2):367-399. 10.1016/j.jde.2005.06.008
Nicolaenko B, Scheurer B, Temam R: Some global dynamical properties of a class of pattern formation equations. Commun Part Diff Eqn 1989, 14: 245-297. 10.1080/03605308908820597
Ma T, Wang SH: Bifurcation Theory and Applications. World Scietific Series. Nonlinear Sci Ser A Monogr Treatises. World Scientific, Singapore 2005., 153:
Ma T, Wang SH: Stability and Bifurcation of Nonlinear Evolution Equations. Science Press, China (in Chinese); 2007.
Ma T, Wang SH: Phase Transition Dynamics in Nonlinear Sciences. Springer, New York; 2011:in press.
Song LY, Zhang YD, Ma T: Global attractor of the Cahn-Hilliard equation in Hk spaces. J Math Anal Appl 2009, 355: 53-62. 10.1016/j.jmaa.2009.01.035
Pazy A: Semigroups of Linear Operators and Applications to Partial Differential Equations. In Appl Math Sci. Volume 44. Springer; 2006.
Acknowledgements
The author is very grateful to the anonymous referees whose careful reading of the manuscript and valuable comments enhanced presentation of the manuscript. Foundation item: the National Natural Science Foundation of China (No. 11071177).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that they have no competing interests.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Luo, H. Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces. Bound Value Probl 2011, 39 (2011). https://doi.org/10.1186/1687-2770-2011-39
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-2770-2011-39
Keywords
- semigroup of operator
- global attractor
- extended Fisher-Kolmogorov equation
- regularity