# A computational method using multiresolution for volumetric data integration

- Mehmet Ali Akinlar
^{1}, - Muhammet Kurulay
^{2}, - Aydin Secer
^{3}Email author and - Mehmet Celenk
^{4}

**2012**:115

https://doi.org/10.1186/1687-2770-2012-115

© Akinlar et al.; licensee Springer 2012

**Received: **6 August 2012

**Accepted: **2 October 2012

**Published: **17 October 2012

## Abstract

In this paper, we present a new method for integration of 3-D medical data by utilizing the advantages of 3-D multiresolution analysis and techniques of variational calculus. We first express the data integration problem as a variational optimal control problem where we express the displacement field in terms of wavelet expansions and, secondly, we write the components of the displacement field in terms of wavelet coefficients. We solve this optimization problem with a blockwise descent algorithm. We demonstrate the registration of 3-D brain MR images in the size of $257\times 257\times 65$ as an application of the present method. Experimental results indicate that the method can integrate 3-D MR images better than only variational or only wavelet-based methods.

**MSC:** 68U10, 65D18, 65J05, 97N40.

### Keywords

inverse problems variational optimization multiresolution image integration## 1 Introduction

The main purpose of this paper is to present an efficient 3-D medical data (image) integration technique. Image integration (sometimes called registration or matching) can be described as finding a spatial correspondence between pixels (or voxels) of two images that maximizes the similarity between the two images. The images could be of the same or different objects and imaging modalities and possibly be taken at different distances, angles, and times. Detecting tumors, locating diseased areas, monitoring changes in an individual, drug discovery, image fusion, feature matching, and motion tracking are some of the important applications of the image registration problem. So far a general theory for image matching has yet to be established. Each application venue has developed its own approaches and implementations. As a result, a single standard method for image integration has not emerged. Therefore, finding reliable and efficient image integration techniques along with fast implementation methods is significantly important and active research area. Some of the well-known image integration algorithms can be seen in [1–5] and in the references therein.

Structure of this paper is as follows. In Section 2, we present an algorithm for integration of 3-D medical data by utilizing the advantages of 3-D multiresolution analysis and techniques of variational calculus. In Section 10, we present some experimental results regarding the integration of MR images as an application of the present method. We complete the paper with a final section where we briefly summarize the paper and discuss the future extensions.

## 2 Multiresolution approach for deformation field

Assume that both the template $\mathbf{T}(\mathbf{x})$ and reference $\mathbf{R}(\mathbf{x})$ images are defined on the same domain $\mathrm{\Omega}\subset {\mathbb{R}}^{3}$. Because reference and template images are obtained from different distances, angles, times, sensors, and sometimes even by different individuals, a displacement field may occur between the reference and template images. One of the major goals of this paper is to compute the deformation field in a systematic way.

*α*, which yields that

The major goal of this paper is to compute the displacement field $u(\mathbf{x})$ in a systematic way. We express each of ${u}_{i}$, $i=1,2,3$, in terms of wavelet coefficients. Therefore, computing these wavelet coefficients will be enough to obtain the displacement field $u(\mathbf{x})$.

- (1)
${\bigcap}_{\mathbf{n}}{V}_{\mathbf{n}}=\{0\}$; ${\bigcup}_{\mathbf{n}}{V}_{\mathbf{n}}{\subset}_{\mathrm{dense}}{L}^{2}(\mathrm{\Omega})$;

- (2)
$f(\mathbf{x})\in {V}_{\mathbf{n}}\u27faf({2}^{\mathbf{m}}\mathbf{x})\in {V}_{\mathbf{n}+\mathbf{m}}$, for every $\mathbf{n}\in {\mathbb{Z}}^{3}$, $\mathbf{m}\in E$;

- (3)
$f(\mathbf{x})\in {V}_{\mathbf{n}}\u27faf(\mathbf{x}-{2}^{-\mathbf{k}})\in {V}_{\mathbf{n}}$, for every $\mathbf{k}\in {\mathbb{Z}}^{3}$, $\mathbf{n}\in E$;

- (4)
There exists $\mathrm{\Phi}\in {V}_{\mathbf{0}}$ such that ${\{\mathrm{\Phi}(\mathbf{x}-\mathbf{k})\}}_{\mathbf{k}\in {\mathbb{Z}}^{3}}$ is a Riesz basis for ${V}_{\mathbf{0}}$.

*m*,

*i.e.*, in the space ${V}_{m}$, the displacement field ${u}^{m}=({u}_{1}^{m},{u}_{2}^{m},{u}_{3}^{m})$ will be parameterized by the vector

## 3 Optimal control formulation of data integration

where ${C}_{\mathrm{sim}}[\mathbf{R},\mathbf{T};{\mathit{\varphi}}_{u}]$ denotes a similarity measure between the template image **T** and the reference image **R**, ${\mathit{\varphi}}_{u}(\mathbf{x}):=\mathbf{x}+u(\mathbf{x})$ is the deformation field, *u* is the displacement field, Γ is the set of all possible admissible transformations, ${C}_{\mathrm{reg}}[u]$ is a regularization term, and *λ* is a regularization constant.

Note that some other similarity measures might be selected depending on the problem. We choose (7) because, as of our best knowledge, this similarity measure has not been associated with any volumetric image registration algorithm in the literature and to test the convenience of this measure in these types of applications.

Without the regularizing term in functional (6), the image registration problem (5) is ill-posed [8]; furthermore, imaging data usually is not smooth due to edges, folding, or other unwanted deformations. Ill-posed problems are widely used in PDE-based image processing problems and inverse problems. An optimization problem is said to be well posed if the solution of the problem uniquely exists and the solution depends continuously on the data of the problem. If one of these two conditions is not satisfied, it is called an ill-posed problem. Image registration is an ill-posed optimal control problem. In order to overcome the ill-posedness of the optimization problem (5) and to assure smooth solutions, we introduce additional regularization terms. The main idea behind adding a regularization term is to smoothen the problem with respect to both the functional and the solution so that well-posedness is assured and efficient computational methods can be defined to determine minimizers. Typical regularization terms associated with image registration problems include curvature, diffusion, elasticity, and fluid. Details about each of these regularization approaches can be seen, for example, in [1] and the references therein.

which penalizes non-smooth images. Major shortcomings of (9) is that some image features, like edges of the original image, may show up blurred in the reconstructed image. To overcome this drawback, Rudin, Osher, and Fatemi (ROF) proposed replacing (9) with so-called total-variation (TV) seminorm ${\int}_{\mathrm{\Omega}}\sqrt{|\mathrm{\nabla}u(\mathbf{x})|}\phantom{\rule{0.2em}{0ex}}d\mathbf{x}$. In the solution of the optimal control problem (5), in order to prevent the degeneracy of the resulting Euler-Lagrange equations, we modify the TV-model as ${\int}_{\mathrm{\Omega}}\sqrt{{|\mathrm{\nabla}u(\mathbf{x})|}^{2}+\beta}\phantom{\rule{0.2em}{0ex}}d\mathbf{x}$, where *β* is an arbitrarily small perturbation parameter. Another regularization term that we use is ${\int}_{\mathrm{\Omega}}log(u(\mathbf{x}))\phantom{\rule{0.2em}{0ex}}d\mathbf{x}$. This term is added to make the regularization term original and to see its impact on the volumetric data integration problems.

*m*, the optimal control problem can be expressed as

## 4 Experimental results

## 5 Conclusion

In this paper, we present a method for integration of 3-D medical data by utilizing the advantages of 3-D multiresolution analysis and techniques of variational calculus. We first express the data integration problem as a variational optimal control problem where we express the displacement field in terms of wavelet expansions and, secondly, we express the components of the displacement field in terms of wavelet coefficients. We solve the aforementioned optimization problem with a blockwise descent algorithm. We demonstrate the registration of 3-D brain MR images in the size of $257\times 257\times 65$ as an application of the present method. Experimental results indicate that the method can integrate 3-D MR images better than only variational or only wavelet based methods. In a related work [9], a 3-D wavelet based method was presented for deformable image registration where different similarity measure, different regularization term, and different types of wavelets were used.

In future work, we will investigate the applications of this image matching technique to the registration of noisy and blurred images. Furthermore, we plan to compare the strength of these registration techniques with some well-known image registration methods in terms of speed, quality, and effectiveness in detail.

## Declarations

## Authors’ Affiliations

## References

- Akinlar, MA: A new method for non-rigid registration of 3D images. Ph.D. thesis, The University of Texas at Arlington (2009)Google Scholar
- Akinlar MA, Ibragimov RN: Application of an image registration method to noisy images.
*Sarajevo J. Math.*2011, 7(1):1-9.MathSciNetGoogle Scholar - Akinlar MA, Celenk M: Quality assessment for an image registration.
*Int. J. Contemporary Math. Sciences*2011, 6(30):1483-1490.MathSciNetGoogle Scholar - Akinlar MA, Kurulay M, Secer A, Bayram M: Efficient variational approaches for deformable registration of images.
*Abstr. Appl. Anal.*2012. doi:10.1155/2012/704567Google Scholar - Akinlar, MA, Kurulay, M, Secer, A, Celenk, M: Curvature driven diffusion based medical image registration methods, ICAAM (2012)Google Scholar
- Mallat S:
*A Wavelet Tour of Signal Processing*. Academic Press, San Diego; 2008.Google Scholar - Sun J, Chen H: Variational Method to the Impulsive Equation with Neumann Boundary Conditions.
*Bound. Value Probl.*2009., 2009: Article ID 316812. doi:10.1155/2009/316812Google Scholar - Denche M, Djezzar S: A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems.
*Bound. Value Probl.*2006., 2006: Article ID 37524. doi:10.1155/BVP/2006/37524Google Scholar - Noblet V, Heinrich C, Heitz F, Armspach JP: 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization.
*IEEE Trans. Image Process.*2005, 14(5):553-566.MathSciNetView ArticleGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.