# Existence of multiple solutions for the Brezis-Nirenberg-type problem with singular coefficients

## Abstract

By energy estimates and by establishing a local (PS) condition, we obtain the multiplicity of solutions to a class of Brezis-Nirenberg-type problem with singular coefficients via minimax methods and the Krasnoselskii genus theory.

## 1 Introduction and main results

This paper is concerned with multiple solutions for the semilinear Brezis-Nirenberg-type problem with singular coefficients

$\left\{\begin{array}{ll}âˆ’div\left(\frac{Du}{{|x|}^{2a}}\right)=\mathrm{Î»}\frac{{|u|}^{{2}_{âˆ—}âˆ’2}u}{{|x|}^{{2}_{âˆ—}b}}+\mathrm{Î²}\frac{{|u|}^{qâˆ’2}u}{{|x|}^{\mathrm{Î±}}},& xâˆˆ\mathrm{Î©}\text{;}\\ u=0,& xâˆˆ\mathrm{âˆ‚}\mathrm{Î©}\text{,}\end{array}$
(1)

where $\mathrm{Î©}âŠ‚{R}^{n}$ is a bounded smooth domain, and $0âˆˆ\mathrm{Î©}$, $âˆ’\mathrm{âˆž}, $aâ‰¤b, ${2}_{âˆ—}=\frac{2n}{nâˆ’2d}$, $d=a+1âˆ’bâˆˆ\left(0,1\right]$, $1, $\mathrm{Î±}<\left(1+a\right)q+n\left(1âˆ’\frac{q}{2}\right)$. $\mathrm{Î²}>0$, $\mathrm{Î»}>0$ are two real parameters.

The starting point of the variational approach to the problem is the Caffarelli-Kohn-Nirenberg inequality (see [1]): There is a constant ${C}_{a,b}>0$ such that

${\left({âˆ«}_{{R}^{n}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dx\right)}^{2/{2}_{âˆ—}}â‰¤{C}_{a,b}{âˆ«}_{{R}^{n}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dx,$
(2)

for all $uâˆˆ{C}_{0}^{\mathrm{âˆž}}\left({R}^{n}\right)$, where

$âˆ’\mathrm{âˆž}

Let ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$ be the completion of ${C}_{0}^{\mathrm{âˆž}}\left({R}^{n}\right)$ with respect to the weighted norm $âˆ¥â‹\dots âˆ¥$ defined by

$âˆ¥uâˆ¥={\left({âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dx\right)}^{1/2}.$

From the boundedness of Î© and the standard approximation arguments, it is easy to see that (2) holds for any $uâˆˆ{D}_{a}^{1,2}\left(\mathrm{Î©}\right)$ in the sense:

${\left({âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{r}\phantom{\rule{0.2em}{0ex}}dx\right)}^{2/r}â‰¤C{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dx$
(3)

for $1â‰¤râ‰¤{2}^{âˆ—}=\frac{2n}{nâˆ’2}$, $\frac{\mathrm{Î±}}{r}â‰¤\left(1+a\right)+n\left(\frac{1}{r}âˆ’\frac{1}{2}\right)$, that is, the embedding ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)â†ª{L}^{r}\left(\mathrm{Î©},{|x|}^{âˆ’\mathrm{Î±}}\right)$ is continuous, where ${L}^{r}\left(\mathrm{Î©},{|x|}^{âˆ’\mathrm{Î±}}\right)$ is the weighted ${L}^{r}$ space with the norm

${âˆ¥uâˆ¥}_{r,\mathrm{Î±}}:={âˆ¥uâˆ¥}_{{L}^{r}\left(\mathrm{Î©},{|x|}^{âˆ’\mathrm{Î±}}\right)}={\left({âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{r}\phantom{\rule{0.2em}{0ex}}dx\right)}^{1/r}.$

On ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$, we can define the energy functional

$J\left(u\right)=\frac{1}{2}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{{2}_{âˆ—}}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î²}}{q}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\phantom{\rule{0.2em}{0ex}}dx.$
(4)

From (4), J is well defined in ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$, and $Jâˆˆ{C}^{1}\left({D}_{a}^{1,2}\left(\mathrm{Î©}\right),R\right)$. Furthermore, the critical points of J are weak solutions of problem (1).

Breiz-Nirenberg-type problems have been generalized to many situations such as

$\left\{\begin{array}{ll}âˆ’div\left(\frac{Du}{{|x|}^{2a}}\right)âˆ’\mathrm{Î¼}\frac{u}{{|x|}^{2\left(a+1\right)}}=\frac{{|u|}^{{2}_{âˆ—}âˆ’2}u}{{|x|}^{{2}_{âˆ—}b}}+\mathrm{Î»}\frac{u}{{|x|}^{2\left(a+1\right)âˆ’c}},& xâˆˆ\mathrm{Î©}\text{,}\\ u=0,& xâˆˆ\mathrm{âˆ‚}\mathrm{Î©}\text{.}\end{array}$
(5)

Xuan et al.[2] derived the explicit formula for the extremal functions of the best embedding constant by applying the Bliss lemma [3]. They got a nontrivial solution for problem (5) including the resonant and nonresonant cases by variational methods. He and Zou [4] studied problem (5) and obtained the multiplicity of solutions with the aid of a pseudo-index theory. In [5], problem (5) has been extended to the p-Laplace case by Xuan.

The purpose of this paper is to study the multiplicity of solutions for the Breiz-Nirenberg-type problem (1) with the aid of a minimax method. We obtain multiple nontrivial solutions of (1) by proving the local (PS) condition and energy estimates.

Our main results are the following.

Theorem 1.1 Suppose$1, then

1. (i)

$\mathrm{âˆ€}\mathrm{Î²}>0$, $\mathrm{âˆƒ}{\mathrm{Î»}}_{0}>0$ such that if $0<\mathrm{Î»}<{\mathrm{Î»}}_{0}$, problem (1) has a sequence of solutions $\left\{{u}_{m}\right\}$ with $J\left({u}_{m}\right)<0$ and $J\left({u}_{m}\right)â†’0$ as $mâ†’\mathrm{âˆž}$.

2. (ii)

$\mathrm{âˆ€}\mathrm{Î»}>0$, $\mathrm{âˆƒ}{\mathrm{Î²}}_{0}>0$ such that if $0<\mathrm{Î²}<{\mathrm{Î²}}_{0}$, problem (1) has a sequence of solutions $\left\{{u}_{m}\right\}$ with $J\left({u}_{m}\right)<0$ and $J\left({u}_{m}\right)â†’0$ as $mâ†’\mathrm{âˆž}$.

## 2 Preliminary results

Lemma 2.1[5]

Suppose that$\mathrm{Î©}âŠ‚{R}^{n}$is an open bounded domain with${C}^{1}$boundary and$0âˆˆ\mathrm{Î©}$, $âˆ’\mathrm{âˆž}. The embedding${D}_{a}^{1,2}\left(\mathrm{Î©}\right)â†ª{L}^{r}\left(\mathrm{Î©},{|x|}^{âˆ’\mathrm{Î±}}\right)$is compact if$1â‰¤r<{2}^{âˆ—}$, $\mathrm{Î±}<\left(1+a\right)r+n\left(1âˆ’\frac{r}{2}\right)$.

Lemma 2.2 (Concentration compactness principle [5])

Let$âˆ’\mathrm{âˆž}, $aâ‰¤bâ‰¤a+1$, ${2}_{âˆ—}=2n/\left(nâˆ’2d\right)$, $d=1+aâˆ’bâˆˆ\left[0,1\right]$, and$M\left({R}^{n}\right)$be the space of bounded measures on${R}^{n}$. Suppose that$\left\{{u}_{m}\right\}âŠ‚{D}_{a}^{1,2}\left({R}^{n}\right)$is a sequence such that

Then there are the following statements:

1. (1)

There exists some at most countable set I, a family $\left\{{x}^{\left(i\right)}:iâˆˆI\right\}$ of distinct points in ${R}^{n}$, and a family $\left\{{\mathrm{Î½}}^{\left(i\right)}:iâˆˆI\right\}$ of positive numbers such that

$\mathrm{Î½}={|{|x|}^{âˆ’b}u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dx+\underset{iâˆˆI}{âˆ‘}{\mathrm{Î½}}^{\left(i\right)}{\mathrm{Î´}}_{{x}^{\left(i\right)}},$
(6)

where${\mathrm{Î´}}_{x}$is the Dirac-mass of mass 1 concentrated at$xâˆˆ{R}^{n}$.

1. (2)

The following inequality holds

$\mathrm{Î¼}â‰¥{|{|x|}^{âˆ’a}Du|}^{2}\phantom{\rule{0.2em}{0ex}}dx+\underset{iâˆˆI}{âˆ‘}{\mathrm{Î¼}}^{\left(i\right)}{\mathrm{Î´}}_{{x}^{\left(i\right)}}$
(7)

for some family $\left\{{\mathrm{Î¼}}^{\left(i\right)}>0:iâˆˆI\right\}$ satisfying

(8)

where$S:={inf}_{uâˆˆ{D}_{a}^{1,2}\left({R}^{n}\right)âˆ–\left\{0\right\}}{E}_{a,b}\left(u\right)$to be the best embedding constants, and

${E}_{a,b}\left(u\right)=\frac{{âˆ«}_{{R}^{n}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dx}{{\left({âˆ«}_{{R}^{n}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dx\right)}^{2/{2}_{âˆ—}}}.$

In particular, ${âˆ‘}_{iâˆˆI}{\left({\mathrm{Î½}}^{\left(i\right)}\right)}^{2/{2}_{âˆ—}}<\mathrm{âˆž}$.

Lemma 2.3 Assume$\left\{{u}_{n}\right\}$is a (PS) c sequence with$c<0$, $1, then

1. (1)

$\mathrm{âˆ€}\mathrm{Î»}>0$, there exists ${\mathrm{Î²}}_{1}>0$ such that for any $0<\mathrm{Î²}<{\mathrm{Î²}}_{1}$, $\left\{{u}_{n}\right\}$ has a convergent subsequence in ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$.

2. (2)

$\mathrm{âˆ€}\mathrm{Î²}>0$, there exists ${\mathrm{Î»}}_{1}>0$ such that for any $0<\mathrm{Î»}<{\mathrm{Î»}}_{1}$, $\left\{{u}_{n}\right\}$ has a convergent subsequence in ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$.

Proof (1) The boundedness of (PS) c sequence.

For $\left\{{u}_{n}\right\}$ is a (PS) c sequence, then

$J\left({u}_{n}\right)=\frac{1}{2}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|D{u}_{n}|}^{2}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{{2}_{âˆ—}}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î²}}{q}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{q}\phantom{\rule{0.2em}{0ex}}dx,$
(9)
$ã€ˆ{J}^{â€²}\left({u}_{n}\right),{u}_{n}ã€‰={âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|D{u}_{n}|}^{2}\phantom{\rule{0.2em}{0ex}}dxâˆ’\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{q}\phantom{\rule{0.2em}{0ex}}dx.$
(10)

So, we get

$\begin{array}{rl}o\left(1\right)\left(1+âˆ¥{u}_{n}âˆ¥\right)+|c|& â‰¥J\left({u}_{n}\right)âˆ’\frac{1}{{2}_{âˆ—}}ã€ˆ{J}^{â€²}\left({u}_{n}\right),{u}_{n}ã€‰\\ =\frac{d}{n}{âˆ¥{u}_{n}âˆ¥}^{2}âˆ’\left(\frac{1}{q}âˆ’\frac{1}{{2}_{âˆ—}}\right)\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}\frac{{|{u}_{n}|}^{q}}{{|x|}^{\mathrm{Î±}}}\phantom{\rule{0.2em}{0ex}}dx\\ â‰¥\frac{d}{n}{âˆ¥{u}_{n}âˆ¥}^{2}âˆ’\left(\frac{1}{q}âˆ’\frac{1}{{2}_{âˆ—}}\right)\mathrm{Î²}{C}_{\mathrm{Î±}}{âˆ¥{u}_{n}âˆ¥}^{q}.\end{array}$

We have the boundedness of $\left\{{u}_{n}\right\}$ for $1, then there exists a subsequence, we still denote it by $\left\{{u}_{n}\right\}$, such that

From the concentration compactness principle, there exist nonnegative measures Î¼, Î½ and a countable family $\left\{{x}_{i}\right\}âŠ‚\mathrm{Î©}$ such that

$\begin{array}{c}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâ‡€\mathrm{Î½}={|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dx+\underset{iâˆˆI}{âˆ‘}{\mathrm{Î½}}^{\left(i\right)}{\mathrm{Î´}}_{{x}^{\left(i\right)}},\hfill \\ {|x|}^{âˆ’2a}{|D{u}_{n}|}^{2}\phantom{\rule{0.2em}{0ex}}dxâ‡€\mathrm{Î¼}â‰¥{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dx+S\underset{iâˆˆI}{âˆ‘}{\left({\mathrm{Î½}}^{\left(i\right)}\right)}^{2/{2}_{âˆ—}}{\mathrm{Î´}}_{{x}^{\left(i\right)}}.\hfill \end{array}$
1. (2)

Up to a subsequence, ${u}_{n}â†’u$ in ${L}^{{2}_{âˆ—}}\left(\mathrm{Î©},{|x|}^{âˆ’{2}_{âˆ—}b}\right)$.

Since $\left\{{u}_{n}\right\}$ is bounded in ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$, we may suppose, without loss of generality, that there exists $Tâˆˆ{\left({L}^{{2}^{â€²}}\left(\mathrm{Î©},{|x|}^{âˆ’2a}\right)\right)}^{n}$ such that

On the other hand, ${|{u}_{n}|}^{{2}_{âˆ—}âˆ’2}{u}_{n}$ is also bounded in ${L}^{{2}_{âˆ—}^{â€²}}\left(\mathrm{Î©},{|x|}^{âˆ’{2}_{âˆ—}b}\right)$ and

Note that

$\begin{array}{rl}o\left(1\right)âˆ¥\mathrm{Ï†}âˆ¥=& ã€ˆ{J}^{â€²}\left({u}_{n}\right),\mathrm{Ï†}ã€‰\\ =& {âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}D{u}_{n}D\mathrm{Ï†}\phantom{\rule{0.2em}{0ex}}dxâˆ’\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}âˆ’2}{u}_{n}\mathrm{Ï†}\phantom{\rule{0.2em}{0ex}}dx\\ âˆ’\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{qâˆ’2}{u}_{n}\mathrm{Ï†}\phantom{\rule{0.2em}{0ex}}dx,\end{array}$
(11)

taking $nâ†’\mathrm{âˆž}$ in (11), we have

${âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}TD\mathrm{Ï†}\phantom{\rule{0.2em}{0ex}}dx=\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}âˆ’2}u\mathrm{Ï†}\phantom{\rule{0.2em}{0ex}}dx+\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{qâˆ’2}u\mathrm{Ï†}\phantom{\rule{0.2em}{0ex}}dx$
(12)

for any $\mathrm{Ï†}âˆˆ{D}_{a}^{1,2}\left(\mathrm{Î©}\right)$. Let $\mathrm{Ï†}=\mathrm{Ïˆ}{u}_{n}$ in (12), where $\mathrm{Ïˆ}âˆˆC\left(\stackrel{Â¯}{\mathrm{Î©}}\right)$, then it follows that

$\begin{array}{r}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}D{u}_{n}{u}_{n}D\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx+{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|D{u}_{n}|}^{2}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx\\ \phantom{\rule{1em}{0ex}}=\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx+\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{q}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx.\end{array}$
(13)

Taking $nâ†’\mathrm{âˆž}$ in (13), we have

${âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}uTD\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx+{âˆ«}_{\mathrm{Î©}}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}d\mathrm{Î¼}=\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}d\mathrm{Î½}+\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx.$
(14)

Let $\mathrm{Ï†}=\mathrm{Ïˆ}u$ in (12), then it follows that

${âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}T\mathrm{Ïˆ}u\phantom{\rule{0.2em}{0ex}}dx+{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}Tu\phantom{\rule{0.2em}{0ex}}d\mathrm{Ïˆ}=\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx+\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx.$
(15)

Thus, it implies that

${âˆ«}_{\mathrm{Î©}}\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}d\mathrm{Î¼}=\mathrm{Î»}\underset{iâˆˆI}{âˆ‘}{\mathrm{Î½}}_{i}\mathrm{Ïˆ}\left({x}_{i}\right)+{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}TDu\mathrm{Ïˆ}\phantom{\rule{0.2em}{0ex}}dx,$
(16)

which implies that

$S{\left({\mathrm{Î½}}_{i}\right)}^{2/{2}_{âˆ—}}â‰¤{\mathrm{Î¼}}_{i}=\mathrm{Î»}{\mathrm{Î½}}_{i}.$

Hence, ${\mathrm{Î½}}_{i}â‰¥{\left({\mathrm{Î»}}^{âˆ’1}S\right)}^{n/2d}$ if .

On the other hand,

$\begin{array}{rcl}0& >& c=\underset{nâ†’\mathrm{âˆž}}{lim}\left(J\left({u}_{n}\right)âˆ’\frac{1}{{2}_{âˆ—}}ã€ˆ{J}^{â€²}\left({u}_{n}\right),{u}_{n}ã€‰\right)\\ =& \underset{nâ†’\mathrm{âˆž}}{lim}\left(\frac{d}{n}{âˆ¥{u}_{n}âˆ¥}^{2}âˆ’\mathrm{Î²}\left(\frac{1}{q}âˆ’\frac{1}{{2}_{âˆ—}}\right){âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{q}\phantom{\rule{0.2em}{0ex}}dx\right)\\ â‰¥& \frac{d}{n}{âˆ¥uâˆ¥}^{2}âˆ’\mathrm{Î²}C{âˆ¥uâˆ¥}^{q},\end{array}$

then ${âˆ¥uâˆ¥}^{q}â‰¤C{\mathrm{Î²}}^{q/\left(2âˆ’q\right)}$, so that

$\begin{array}{rcl}0& >& c=\underset{nâ†’\mathrm{âˆž}}{lim}\left(J\left({u}_{n}\right)âˆ’\frac{1}{{2}_{âˆ—}}ã€ˆ{J}^{â€²}\left({u}_{n}\right),{u}_{n}ã€‰\right)\\ =& \underset{nâ†’\mathrm{âˆž}}{lim}\left(\frac{d}{n}{âˆ¥{u}_{n}âˆ¥}^{2}âˆ’\mathrm{Î²}\left(\frac{1}{q}âˆ’\frac{1}{{2}_{âˆ—}}\right){âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{q}\phantom{\rule{0.2em}{0ex}}dx\right)\\ â‰¥& \frac{d}{n}{\mathrm{Î¼}}_{i}âˆ’\mathrm{Î²}C{\mathrm{Î²}}^{q/\left(2âˆ’q\right)}\\ â‰¥& \frac{d}{n}{S}^{\frac{n}{2d}}{\left({\mathrm{Î»}}^{âˆ’1}\right)}^{\frac{nâˆ’2d}{2d}}âˆ’C{\mathrm{Î²}}^{\frac{2}{2âˆ’q}}.\end{array}$

However, if $\mathrm{Î²}>0$ is given, we can choose ${\mathrm{Î»}}_{1}>0$ so small that for every $0<\mathrm{Î»}<{\mathrm{Î»}}_{1}$, the last term on the right-hand side above is greater than 0, which is a contradiction. Similarly, if $\mathrm{Î»}>0$ is given, we can take ${\mathrm{Î²}}_{1}>0$ so small that for every $0<\mathrm{Î²}<{\mathrm{Î²}}_{1}$, the last term on the right-hand side above is greater than 0. Then ${\mathrm{Î½}}_{i}=0$ for each i.

Up to now, we have shown that

$\underset{nâ†’\mathrm{âˆž}}{lim}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dx={âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dx.$

So, by the Breiz-Lieb lemma,

$\begin{array}{rcl}o\left(1\right)âˆ¥{u}_{n}âˆ¥& =& {âˆ¥{u}_{n}âˆ¥}^{2}âˆ’\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|{u}_{n}|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|{u}_{n}|}^{q}\phantom{\rule{0.2em}{0ex}}dx\\ =& {âˆ¥{u}_{n}âˆ’uâˆ¥}^{2}âˆ’{âˆ¥uâˆ¥}^{2}âˆ’\mathrm{Î»}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\mathrm{Î²}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\phantom{\rule{0.2em}{0ex}}dx\\ =& {âˆ¥{u}_{n}âˆ’uâˆ¥}^{2}+o\left(1\right)âˆ¥uâˆ¥\end{array}$

since ${J}^{â€²}\left(u\right)=0$. Thus, we prove that $\left\{{u}_{n}\right\}$ strongly converges to u in ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$.â€ƒâ–¡

## 3 Existence of infinitely many solutions

In this section, we use the minimax procedure to prove the existence of infinitely many solutions. Let Î£ be the class of subsets of ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)âˆ–\left\{0\right\}$, which are closed and symmetric with respect to the origin. For $Aâˆˆ\mathrm{Î£}$, we define the genus $\mathrm{Î³}\left(A\right)$ by

$\mathrm{Î³}\left(A\right)=min\left\{kâˆˆN:\mathrm{âˆƒ}\mathrm{Ï•}âˆˆC\left(A,{R}^{k}âˆ–\left\{0\right\}\right),\mathrm{Ï•}\left(x\right)=âˆ’\mathrm{Ï•}\left(âˆ’x\right)\right\}.$

Assume that $1, then we obtain

$\begin{array}{rcl}J\left(u\right)& =& \frac{1}{2}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{{2}_{âˆ—}}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{q}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\phantom{\rule{0.2em}{0ex}}dx\\ â‰¥& \frac{1}{2}{âˆ¥uâˆ¥}^{2}âˆ’\frac{{C}_{b}\mathrm{Î»}}{{2}_{âˆ—}}{âˆ¥uâˆ¥}^{{2}_{âˆ—}}âˆ’\frac{\mathrm{Î²}{C}_{\mathrm{Î±}}}{q}{âˆ¥uâˆ¥}^{q}.\end{array}$

Define

$h\left(t\right)=\frac{1}{2}{t}^{2}âˆ’\mathrm{Î»}{C}_{1}{t}^{{2}_{âˆ—}}âˆ’\mathrm{Î²}{C}_{2}{t}^{q}.$

Then, given $\mathrm{Î²}>0$, there exists ${\mathrm{Î»}}_{2}>0$ so small that for every $0<\mathrm{Î»}<{\mathrm{Î»}}_{2}$, there exists $0<{T}_{0}<{T}_{1}$ such that $h\left(t\right)<0$ for $0, $h\left(t\right)>0$ for ${T}_{0}, $h\left(t\right)<0$ for $t>{T}_{1}$. Similarly, given $\mathrm{Î»}>0$, we can choose ${\mathrm{Î²}}_{2}>0$ with the property that ${T}_{0}$, ${T}_{1}$ as above exist for each $0<\mathrm{Î²}<{\mathrm{Î²}}_{2}$. Clearly, $h\left({T}_{0}\right)=h\left({T}_{1}\right)=0$. Following the same idea as in [6â€“8], we consider the truncated functional

$\stackrel{Ëœ}{J}\left(u\right)=\frac{1}{2}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{{2}_{âˆ—}}\mathrm{Ïˆ}\left(u\right){âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{q}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\phantom{\rule{0.2em}{0ex}}dx,$

where $\mathrm{Ïˆ}\left(u\right)=\mathrm{Ï„}\left(âˆ¥uâˆ¥\right)$, and $\mathrm{Ï„}:{R}^{+}â†’\left[0,1\right]$ is a nonincreasing ${C}^{\mathrm{âˆž}}$ function such that $\mathrm{Ï„}\left(t\right)=1$ if $tâ‰¤{T}_{0}$ and $\mathrm{Ï„}\left(t\right)=0$ if $tâ‰¥{T}_{1}$. The main properties of $\stackrel{Ëœ}{J}$ are the following.

Lemma 3.1

1. (1)

$\stackrel{Ëœ}{J}âˆˆ{C}^{1}$ and $\stackrel{Ëœ}{J}$ is bounded below.

2. (2)

If $\stackrel{Ëœ}{J}\left(u\right)â‰¤0$, then $âˆ¥uâˆ¥â‰¤{T}_{0}$ and $\stackrel{Ëœ}{J}\left(u\right)=J\left(u\right)$.

3. (3)

For any $\mathrm{Î»}>0$, there exists ${\mathrm{Î²}}_{0}=min\left\{{\mathrm{Î²}}_{1},{\mathrm{Î²}}_{2}\right\}$ such that if $0<\mathrm{Î²}<{\mathrm{Î²}}_{0}$ and $c<0$, then $\stackrel{Ëœ}{J}$ satisfies (PS) c condition.

4. (4)

for any $\mathrm{Î²}>0$, there exists ${\mathrm{Î»}}_{0}=min\left\{{\mathrm{Î»}}_{1},{\mathrm{Î»}}_{2}\right\}$ such that if $0<\mathrm{Î»}<{\mathrm{Î»}}_{0}$ and $c<0$, then $\stackrel{Ëœ}{J}$ satisfies (PS) c condition.

Proof (1) and (2) are immediate. To prove (3) and (4), observe that all (PS) c sequences for $\stackrel{Ëœ}{J}$ with $c<0$ must be bounded. Similar to the proof of Lemma 2.3, there exists a convergent subsequence.â€ƒâ–¡

Lemma 3.2 Given$mâˆˆN$, there is${\mathrm{Îµ}}_{m}<0$such that

$\mathrm{Î³}\left(\left\{uâˆˆ{D}_{a}^{1,2}\left(\mathrm{Î©}\right):\stackrel{Ëœ}{J}\left(u\right)â‰¤{\mathrm{Îµ}}_{m}\right\}\right)â‰¥m.$

Proof Fix m and let ${H}_{m}$ be an m-dimensional subspace of ${D}_{a}^{1,2}\left(\mathrm{Î©}\right)$. Take $uâˆˆ{H}_{m}$, , write $u={r}_{m}v$ with $vâˆˆ{H}_{m}$, $âˆ¥vâˆ¥=1$ and ${r}_{m}=âˆ¥uâˆ¥$. Thus, for $0<{r}_{m}<{T}_{0}$, since all the norms are equivalent, we have

$\begin{array}{rcl}\stackrel{Ëœ}{J}\left(u\right)& =& J\left(u\right)=\frac{1}{2}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’2a}{|Du|}^{2}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{{2}_{âˆ—}}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’{2}_{âˆ—}b}{|u|}^{{2}_{âˆ—}}\phantom{\rule{0.2em}{0ex}}dxâˆ’\frac{\mathrm{Î»}}{q}{âˆ«}_{\mathrm{Î©}}{|x|}^{âˆ’\mathrm{Î±}}{|u|}^{q}\phantom{\rule{0.2em}{0ex}}dx\\ â‰¤& \frac{1}{2}{âˆ¥uâˆ¥}^{2}âˆ’\frac{\mathrm{Î»}{C}_{1}}{{2}_{âˆ—}}{âˆ¥uâˆ¥}^{{2}_{âˆ—}}âˆ’\frac{\mathrm{Î»}{C}_{2}}{q}{âˆ¥uâˆ¥}^{q}\\ =& \frac{1}{2}{r}_{m}^{2}âˆ’\frac{\mathrm{Î»}{C}_{1}}{{2}_{âˆ—}}{r}_{m}^{{2}_{âˆ—}}âˆ’\frac{\mathrm{Î»}{C}_{2}}{q}{r}_{m}^{q}:={\mathrm{Îµ}}_{m}.\end{array}$

Therefore, we can choose ${r}_{m}âˆˆ\left(0,{T}_{0}\right)$ so small that $\stackrel{Ëœ}{J}\left(u\right)â‰¤{\mathrm{Îµ}}_{m}<0$. Let ${S}_{{r}_{m}}=\left\{uâˆˆ{D}_{a}^{1,2}\left(\mathrm{Î©}\right):âˆ¥uâˆ¥={r}_{m}\right\}$, then ${S}_{{r}_{m}}âˆ©{H}_{m}âŠ‚{\stackrel{Ëœ}{J}}^{{\mathrm{Îµ}}_{m}}$. Hence, $\mathrm{Î³}\left({\stackrel{Ëœ}{J}}^{{\mathrm{Îµ}}_{m}}\right)â‰¥\mathrm{Î³}\left({S}_{{r}_{m}}âˆ©{H}_{m}\right)=m$. Denote ${\mathrm{Î“}}_{m}=\left\{Aâˆˆ\mathrm{Î£}:\mathrm{Î³}\left(A\right)â‰¥m\right\}$ and let

${c}_{m}=\underset{Aâˆˆ{\mathrm{Î“}}_{m}}{inf}\underset{uâˆˆA}{sup}\stackrel{Ëœ}{J}\left(u\right).$

Then $âˆ’\mathrm{âˆž}<{c}_{m}â‰¤{\mathrm{Îµ}}_{m}<0$ because ${\stackrel{Ëœ}{J}}^{{\mathrm{Îµ}}_{m}}âˆˆ{\mathrm{Î“}}_{m}$ and $\stackrel{Ëœ}{J}$ is bounded from below.â€ƒâ–¡

Lemma 3.3 Let Î», Î² be as in (3) or (4) of Lemma  3.1. Then all${c}_{m}$are critical values of$\stackrel{Ëœ}{J}$as${c}_{m}â†’0$.

Proof It is clear that ${c}_{m}â‰¤{c}_{m+1}$, ${c}_{m}<0$. Hence, ${c}_{m}â†’\stackrel{Â¯}{c}â‰¤0$. Moreover, since all ${c}_{m}$ are critical values of $\stackrel{Ëœ}{J}$, we claim that $\stackrel{Â¯}{c}=0$. If $\stackrel{Â¯}{c}<0$, because ${K}_{\stackrel{Â¯}{c}}$ is compact and ${K}_{\stackrel{Â¯}{c}}âˆˆ\mathrm{Î£}$, it follows that $\mathrm{Î³}\left({K}_{\stackrel{Â¯}{c}}\right)={N}_{0}<+\mathrm{âˆž}$ and there exists $\mathrm{Î´}>0$ such that $\mathrm{Î³}\left({K}_{\stackrel{Â¯}{c}}\right)=\mathrm{Î³}\left({N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)\right)={N}_{0}$. By the deformation lemma there exist $\mathrm{Îµ}>0$ ($\stackrel{Â¯}{c}+\mathrm{Îµ}<0$) and an odd homeomorphism Î· such that

$\mathrm{Î·}\left({\stackrel{Ëœ}{J}}^{\stackrel{Â¯}{c}+\mathrm{Îµ}}âˆ–{N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)\right)âŠ‚{\stackrel{Ëœ}{J}}^{\stackrel{Â¯}{c}âˆ’\mathrm{Îµ}}.$

Since ${c}_{m}$ is increasing and converges to $\stackrel{Â¯}{c}$, there exists $mâˆˆN$ such that ${c}_{m}>\stackrel{Â¯}{c}âˆ’\mathrm{Îµ}$ and ${c}_{m+{N}_{0}}â‰¤\stackrel{Â¯}{c}$ and there exists $Aâˆˆ{\mathrm{Î“}}_{m+{N}_{0}}$ such that ${sup}_{uâˆˆA}\stackrel{Ëœ}{J}\left(u\right)<\stackrel{Â¯}{c}+\mathrm{Îµ}$. By the properties of Î³, we have

$\mathrm{Î³}\left(\phantom{\rule{0.2em}{0ex}}\stackrel{Â¯}{Aâˆ–{N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)}\phantom{\rule{0.2em}{0ex}}\right)â‰¥\mathrm{Î³}\left(A\right)âˆ’\mathrm{Î³}\left({N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)\right)â‰¥m,\phantom{\rule{1em}{0ex}}\mathrm{Î³}\left(\phantom{\rule{0.2em}{0ex}}\stackrel{Â¯}{Aâˆ–{N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)}\phantom{\rule{0.2em}{0ex}}\right)â‰¥m.$

Therefore,

$\mathrm{Î·}\left(\phantom{\rule{0.2em}{0ex}}\stackrel{Â¯}{Aâˆ–{N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)}\phantom{\rule{0.2em}{0ex}}\right)âˆˆ{\mathrm{Î“}}_{m}.$

Consequently,

$\underset{uâˆˆ\mathrm{Î·}\left(\stackrel{Â¯}{Aâˆ–{N}_{\mathrm{Î´}}\left({K}_{\stackrel{Â¯}{c}}\right)}\right)}{sup}\stackrel{Ëœ}{J}\left(u\right)â‰¥{c}_{m}>\stackrel{Â¯}{c}âˆ’\mathrm{Îµ},$

a contradiction, hence ${c}_{m}â†’0$.â€ƒâ–¡

With Lemma 3.1 to Lemma 3.3, we have proved Theorem 1.1.

## References

1. Caffarelli I, Kohn R, Nirenberg L: First order interpolation inequalities with weights. Compos. Math. 1984, 53: 259â€“275.

2. Xuan B, Su S, Yan Y: Existence results for Brezis-Nirenberg problems with Hardy potential and singular coefficients. Nonlinear Anal. 2007, 67: 2091â€“2106. 10.1016/j.na.2006.09.018

3. Bliss G: An integral inequality. J. Lond. Math. Soc. 1930, 5: 40â€“46. 10.1112/jlms/s1-5.1.40

4. He XM, Zou WM: Multiple solutions for the Brezis-Nirenberg problem with a Hardy potential and singular coefficients. Comput. Math. Appl. 2008, 56: 1025â€“1031. 10.1016/j.camwa.2008.01.029

5. Xuan B: The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear Anal. 2005, 62: 703â€“725. 10.1016/j.na.2005.03.095

6. Bernis F, Garcia-Azorero J, Peral I: Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth-order. Adv. Differ. Equ. 1996, 1: 219â€“240.

7. Wang YJ, Shen YT: Multiple and sign-changing solutions for a class of semilinear biharmonic equation. J. Differ. Equ. 2009, 246: 3109â€“3125. 10.1016/j.jde.2009.02.016

8. Wang YJ, Yin YM, Yao YT: Multiple solutions for quasilinear SchrÃ¶dinger equations involving critical exponent. Appl. Math. Comput. 2010, 216: 849â€“856. 10.1016/j.amc.2010.01.091

## Acknowledgements

Project is supported by National Natural Science Foundation of China, Tian Yuan Special Foundation (No. 11226116), the China Scholarship Council, Natural Science Foundation of Jiangsu Province of China for Young Scholar (No. BK2012109), the Fundamental Research Funds for the Central Universities (No. JUSRP11118, JUSRP211A22) and Foundation for young teachers of Jiangnan University (No. 2008LQN008).

## Author information

Authors

### Corresponding author

Correspondence to Yang Yang.

### Competing interests

The authors declare that they have no competing interests.

### Authorsâ€™ contributions

All authors read and approved the final manuscript.

## Rights and permissions

Reprints and permissions

Yang, Y., Zhang, J. & Gu, X. Existence of multiple solutions for the Brezis-Nirenberg-type problem with singular coefficients. Bound Value Probl 2012, 137 (2012). https://doi.org/10.1186/1687-2770-2012-137