Skip to main content

Existence of nontrivial solutions for perturbed p-Laplacian system involving critical nonlinearity and magnetic fields

Abstract

Under the suitable assumptions, we establish the existence of nontrivial solutions for a perturbed p-Laplacian system in R N with critical nonlinearity and magnetic fields by using the variational method.

MSC:35B33, 35J60, 35J65.

1 Introduction

In this paper, we consider a class of quasi-linear elliptic systems of the form

{ ε p Δ p , A u + V ( x ) | u | p 2 u = H s ( | u | p , | v | p ) | u | p 2 u + K ( x ) | u | p 2 u , x R N , ε p Δ p , A v + V ( x ) | v | p 2 v = H t ( | u | p , | v | p ) | v | p 2 v + K ( x ) | v | p 2 v , x R N ,
(1.1)

where Δ p , A u=div( | u + i A ( x ) u | p 2 (u+iA(x)u)), i is the imaginary unit, A(x): R N R N is real vector potential, 1<p<N, V(x) is a non-negative potential, p =Np/(Np) denotes the Sobolev critical exponent for N3 and K(x) is a bounded positive coefficient.

The scalar case corresponding to (1.1) has received considerable attention in recent years. For p=2 and A(x)0, the scalar case corresponding to (1.1) turns into

ε 2 Δu+V(x)u=K(x) | u | 2 2 u+f ( x , | u | 2 ) u,x R N .
(1.2)

The equation (1.2) arises in finding standing wave solutions of the nonlinear Schrödinger equation

iħ ψ t = ħ 2 2 m Δψ+W(x)ψg ( x , | ψ | ) ψ.
(1.3)

A standing wave solution of (1.3) is a solution of the form

ψ(x,t)=u(x) exp i E t ħ .

Then ψ(x,t) solves (1.3) if and only if u(x) solves (1.2) with V(x)=W(x)E and ε 2 = ħ 2 2 m .

The equation (1.2) has been extensively investigated in the literature based on various assumptions of the potential V(x) and the nonlinearity f(x,u). See, for example, [115] and the references therein.

There are also many works dealing with the magnetic fields A(x)0 and p=2 for the scalar case corresponding to (1.1). In [16], the authors firstly obtained the existence of standing waves for special classes of magnetic fields. For many results, we refer the reader to [1722].

For general p>1, most of the work, as we know, consider the scalar case which corresponds to (1.1) with A(x)0. See [2327] and the references therein. We especially mention [24] for the existence of positive solutions for a class of p-Laplacian equations. Gloss [24] studied the existence and asymptotic behavior of positive solutions for quasi-linear elliptic equations of the form

ε p Δ p u+V(x) | u | p 2 u=f(u),x R N ,
(1.4)

where f is a subcritical nonlinearity without some growth conditions such as the Ambrosetti-Rabinowitz condition. The problem (1.4) has also been studied in [2832]. The main difficulty in treating this class of equation (1.4) is a possible lack of compactness due to the unboundedness of the domain.

However, to our best knowledge, it seems there is almost no work on the existence of non-trivial solutions to the problem (1.1) involving critical nonlinearity and magnetic fields. We mainly follow the idea of [7]. Observe that though the idea was used in other problems, the adaption of the procedure to the problem is not trivial at all. Because of the appearance of magnetic fields A(x), we must deal with the problem for complex-valued functions and therefore we need more delicate estimates.

The outline of the paper is as follows. The forthcoming section is the main result and preliminary results including the appropriate space setting to work with. In Section 3, we study the behavior of ( PS ) c sequence. Section 4 gets that the functional associated to the problem possesses the mountain geometry structure, and the last section concludes the proof of the main result.

2 Main results and preliminaries

Firstly, we make the following assumptions on V(x), A(x), H(s,t) and K(x) throughout the paper:

( V 0 ) VC( R N ,R), V(0)= inf x R N V(x)=0 and there exists b>0 such that the set ν b :={x R N :V(x)<b} has finite Lebesgue measure;

( A 0 ) AC( R N , R N ) and A(0)=0;

( K 0 ) K(x)C( R N , R + ), 0<infKsupK<;

( H 1 ) H(s,t) C 1 ( R + × R + ,R) and H s , H t =o(|s|+|t|) as |s|+|t|0;

( H 2 ) there exist c 1 >0 and p<α< p such that

| H s ( s , t ) | , | H t ( s , t ) | c 1 ( 1 + | s | α p p + | t | α p p ) ;

( H 3 ) there are a 0 >0, θ(p, p ) and α,β>p such that H(s,t)p a 0 ( | s | α p + | t | β p ) and 0< θ p H(s,t)s H s +t H t .

Under the above mentioned conditions, we get the following result.

Theorem 1 Suppose that the assumptions ( V 0 ), ( A 0 ), ( K 0 ) and ( H 1 )-( H 3 ) hold. Then for any σ>0, there is ε σ >0 such that if ε< ε σ , the problem (1.1) has at least one solution ( u ε , v ε ) which satisfies

θ p p θ R N ( ε p ( | | u ε | | p + | | v ε | | p ) + V ( x ) | u ε | p + V ( x ) | v ε | p ) σ ε N .

Setting λ= ε p , the problem (1.1) is equivalent to the following problem:

{ Δ p , A u + λ V ( x ) | u | p 2 u = λ H s ( | u | p , | v | p ) | u | p 2 u + λ K ( x ) | u | p 2 u , x R N , Δ p , A v + λ V ( x ) | v | p 2 v = λ H t ( | u | p , | v | p ) | v | p 2 v + λ K ( x ) | v | p 2 v , x R N .
(2.1)

We are going to prove the following result.

Theorem 2 Suppose that the assumptions ( V 0 ), ( A 0 ), ( K 0 ) and ( H 1 )-( H 3 ) hold. Then for any σ>0, there is Λ σ >0 such that if λ> Λ σ , the problem (2.1) has at least one solution ( u λ , v λ ) which satisfies

θ p p θ R N ( ( | | u λ | | p + | | v λ | | p ) + λ V ( x ) | u λ | p + λ V ( x ) | v λ | p ) σ λ 1 p N .
(2.2)

For convenience, we quote the following notations. Let E λ , A denote the Banach space

E λ , A = { u W 1 , p ( R N ) : R N λ V ( x ) | u | p < } ,λ>0

equipped with the norm

u λ , A = ( R N ( | u + i λ 1 p A ( x ) u | p + λ V ( x ) | u | p ) ) 1 p .

Set E= E λ , A × E λ , A and ( u , v ) E p = u λ , A p + v λ , A p for any (u,v)E.

Similar to the diamagnetic inequality [16], we have

| | u ( x ) | | | u u ¯ | u | | = | Re ( u + i λ 1 p A u ) u ¯ | u | | | u + i λ 1 p A u |
(2.3)

(the bar denotes complex conjugation). This inequality shows that if u E λ , A , then |u| W 1 , p ( R N ) and therefore u L q ( R N ) for any q[p, p ). That is to say, if u n u in E λ , A , then u n u in L loc q ( R N ) for any q[p, p ) and u n u a.e. in R N .

The energy functional associated with (2.1) is defined by

I λ ( u , v ) = 1 p R N ( | u + i λ 1 p A u | p + λ V ( x ) | u | p + | v + i λ 1 p A v | p + λ V ( x ) | v | p ) λ p R N K ( x ) ( | u | p + | v | p ) λ p R N H ( | u | p , | v | p ) = 1 p ( u , v ) E p λ R N G ( u , v ) ,

where G(u,v)= 1 p K(x)( | u | p + | v | p )+ 1 p H( | u | p , | v | p ).

Under the assumptions of Theorem 2, standard arguments [33] show that I λ C 1 ( E λ , A ,R) and its critical points are weak solutions of the equation (2.1).

3 ( PS ) c condition

We call a sequence {( u n , v n )}E a ( PS ) c sequence if I λ ( u n , v n )c and I λ ( u n , v n )0 strongly in E ( E is the dual space of E). I λ is said to satisfy the ( PS ) c condition if any ( PS ) c sequence contains a convergent subsequence.

The main result of Section 3 is the following compactness result.

Proposition 3.1 Let the assumptions of Theorem  2 be satisfied. There exists a constant α 0 0 independent of λ such that, for any ( PS ) c sequence {( u n , v n )}E for I λ with ( u n , v n )(u,v), either ( u n , v n )(u,v) or c I λ (u,v) α 0 λ 1 N p .

As a consequence, we obtain the following result.

Proposition 3.2 Assume that the assumptions of Proposition  3.1 hold, I λ (u,v) satisfies the ( PS ) c condition for all c α 0 λ 1 N p .

In order to prove Proposition 3.1, we need the following lemmas.

Lemma 3.1 Let the assumptions of Theorem  2 be satisfied. {( u n , v n )} is a ( PS ) c sequence of  I λ . Then c0 and {( u n , v n )} is bounded in the space E.

Proof

One has

I λ ( u n , v n ) 1 θ I λ ( u n , v n ) ( u n , v n ) = ( 1 p 1 θ ) ( u n , v n ) E p + ( 1 θ 1 p ) λ R N K ( x ) ( | u n | p + | v n | p ) + λ R N ( 1 θ ( | u n | p H s ( | u n | p , | v n | p ) + | v n | p H t ( | u n | p , | v n | p ) ) 1 p H ( | u n | p , | v n | p ) ) ( 1 p 1 θ ) ( u n , v n ) E p .

Together with I λ ( u n , v n )c and I λ ( u n , v n )0 as n, we have

( 1 p 1 θ ) ( u n , v n ) E p c+o(1)+ ε n ( u n , v n ) E .

Then {( u n , v n )} is bounded and c0. □

From Lemma 3.1, we may assume ( u n , v n )(u,v) in E and ( u n , v n )(u,v) in L loc q ( R N )× L loc q ( R N ) for any q[p, p ) and u n u, v n v a.e. in R N .

Lemma 3.2 Let γ[p, p ). There is a subsequence {( u n j , v n j )} such that for any ε>0, there is r ε >0 with r r ϵ

lim j sup B j B r ( | u n j | γ + | v n j | γ ) ε,

where B r :={x R N :|x|r}.

Proof The proof of Lemma 3.2 is similar to that of Lemma 3.2 of [27], so we omit it. □

Let η C ( R + ) be a smooth function satisfying 0η(t)1, η(t)=1 if t1 and η(t)=0 if t2. Define u ˜ j (x)=η(2|x|/j)u(x), v ˜ j (x)=η(2|x|/j)v(x). Obviously, we have

u u ˜ j E λ , A 0and v v ˜ j E λ , A 0as j.
(3.1)

Lemma 3.3 One has

lim j Re R N ( H s ( | u n j | p , | v n j | p ) | u n j | p 2 u n j H s ( | u n j u ˜ j | p , | v n j v ˜ j | p ) | u n j u ˜ j | p 2 ( u n j u ˜ j ) H s ( | u ˜ j | p , | v ˜ j | p ) | u ˜ j | p 2 u ˜ j ) φ ¯ = 0

and

lim j Re R N ( H t ( | u n j | p , | v n j | p ) | v n j | p 2 v n j H t ( | u n j u ˜ j | p , | v n j v ˜ j | p ) | v n j v ˜ j | p 2 ( v n j v ˜ j ) H t ( | u ˜ j | p , | v ˜ j | p ) | v ˜ j | p 2 v ˜ j ) ψ ¯ = 0

uniformly in (φ,ψ)E with ( φ , ψ ) E 1.

Proof The local compactness of Sobolev embedding implies that for any r0, we have

lim j Re B r ( H s ( | u n j | p , | v n j | p ) | u n j | p 2 u n j H s ( | u n j u ˜ j | p , | v n j v ˜ j | p ) | u n j u ˜ j | p 2 ( u n j u ˜ j ) H s ( | u ˜ j | p , | v ˜ j | p ) | u ˜ j | p 2 u ˜ j ) φ ¯ = 0

uniformly in φ E λ , A 1. For any ε>0, there exists r ε >0 such that

lim j sup B j B r | u ˜ j | γ R N | u | γ ε

for all r r ϵ . Together with the assumption ( H 2 ) and the Hölder inequality, it follows from Lemma 3.2 that

lim j sup Re R N ( H s ( | u n j | p , | v n j | p ) | u n j | p 2 u n j H s ( | u n j u ˜ j | p , | v n j v ˜ j | p ) | u n j u ˜ j | p 2 ( u n j u ˜ j ) H s ( | u ˜ j | p , | v ˜ j | p ) | u ˜ j | p 2 u ˜ j ) φ ¯ = lim j sup Re B j B r ( H s ( | u n j | p , | v n j | p ) | u n j | p 2 u n j H s ( | u n j u ˜ j | p , | v n j v ˜ j | p ) | u n j u ˜ j | p 2 ( u n j u ˜ j ) H s ( | u ˜ j | p , | v ˜ j | p ) | u ˜ j | p 2 u ˜ j ) φ ¯ c 1 lim j sup B j B r ( | u n j | p 1 + | v n j | p 1 + | u ˜ j | p 1 + | v ˜ j | p 1 ) | φ ¯ | + c 2 lim j sup B j B r ( | u n j | α 1 + | v n j | α 1 + | u ˜ j | α 1 + | v ˜ j | α 1 ) | φ ¯ | c 1 lim j sup ( u n j L p ( B j B r ) p 1 + v n j L p ( B j B r ) p 1 + u ˜ j L p ( B j B r ) p 1 + v ˜ j L p ( B j B r ) p 1 ) φ ¯ L p ( B j B r ) + c 2 lim j sup ( u n j L α ( B j B r ) α 1 + v n j L α ( B j B r ) α 1 + u ˜ j L α ( B j B r ) α 1 + v ˜ j L α ( B j B r ) α 1 ) φ ¯ L α ( B j B r ) c 3 ε p 1 p + c 4 ε α 1 α ,

where c i (i=1,2,3,4) are positive constants. Similarly, we can prove

lim j Re R N ( H t ( | u n j | p , | v n j | p ) | v n j | p 2 v n j H t ( | u n j u ˜ j | p , | v n j v ˜ j | p ) | v n j v ˜ j | p 2 ( v n j v ˜ j ) H t ( | u ˜ j | p , | v ˜ j | p ) | v ˜ j | p 2 v ˜ j ) ψ ¯ = 0 .

 □

Lemma 3.4 Let {( u n , v n )} and {( u ˜ n , v ˜ n )} be as defined above. Then the following conclusions hold:

I λ ( u n u ˜ n , v n v ˜ n )c I λ (u,v)

and

I λ ( u n u ˜ n , v n v ˜ n )0in  E (the dual space of E).

Proof By using the similar arguments of [34, 35], we have

I λ ( u n u ˜ n , v n v ˜ n ) = I λ ( u n , v n ) I λ ( u ˜ n , v ˜ n ) + λ p R N K ( x ) ( ( | u n | p | u n u ˜ n | p | u ˜ n | p ) + ( | v n | p | v n v ˜ n | p | v ˜ n | p ) ) + λ p R N ( H ( | u n | p , | v n | p ) H ( | u n u ˜ n | p , | v n v ˜ n | p ) H ( | u ˜ n | p , | v ˜ n | p ) ) + o ( 1 ) .

By (3.1) and the similar idea of proving the Brézis-Lieb lemma [36], it is easy to get

lim n R N K(x) ( ( | u n | p | u n u ˜ n | p | u ˜ n | p ) + ( | v n | p | v n v ˜ n | p | v ˜ n | p ) ) =0

and

lim n R N ( H ( | u n | p , | v n | p ) H ( | u n u ˜ n | p , | v n v ˜ n | p ) H ( | u ˜ n | p , | v ˜ n | p ) ) =0.

Furthermore, using the fact I λ ( u n , v n )c and I λ ( u ˜ n , v ˜ n ) I λ (u,v), we obtain

I λ ( u n u ˜ n , v n v ˜ n )c I λ (u,v).

In order to prove I λ ( u n u ˜ n , v n v ˜ n )0 in E 1 , for any (φ,ψ)E, it follows that

I λ ( u n u ˜ n , v n v ˜ n ) ( φ , ψ ) = I λ ( u n , v n ) ( φ , ψ ) I λ ( u ˜ n , v ˜ n ) ( φ , ψ ) + λ Re R N K ( x ) ( | u n | p 2 u n | u n u ˜ n | p 2 ( u n u ˜ n ) | u ˜ n | p 2 u ˜ n ) φ ¯ + λ Re R N K ( x ) ( | v n | p 2 v n | v n v ˜ n | p 2 ( v n v ˜ n ) | v ˜ n | p 2 v ˜ n ) ψ ¯ + λ Re R N ( H s ( | u n | p , | v n | p ) | u n | p 2 u n H s ( | u n u ˜ n | p , | v n v ˜ n | p ) | u n u ˜ n | p 2 ( u n u ˜ n ) H s ( | u ˜ n | p , | v ˜ n | p ) | u ˜ n | p 2 u ˜ n ) φ ¯ + λ Re R N ( H t ( | u n | p , | v n | p ) | v n | p 2 v n H t ( | u n u ˜ n | p , | v n v ˜ n | p ) | v n v ˜ n | p 2 ( v n v ˜ n ) H t ( | u ˜ n | p , | v ˜ n | p ) | v ˜ n | p 2 v ˜ n ) ψ ¯ + o ( 1 ) .

It is standard to check that

lim n R N K(x) ( | u n | p 2 u n | u n u ˜ n | p 2 ( u n u ˜ n ) | u ˜ n | p 2 u ˜ n ) φ ¯ =0

and

lim n R N K(x) ( | v n | p 2 v n | v n v ˜ n | p 2 ( v n v ˜ n ) | v ˜ n | p 2 v ˜ n ) ψ ¯ =0

uniformly in (φ,ψ)E with ( φ , ψ ) E 1. Together with Lemma 3.3, we have

I λ ( u n u ˜ n , v n v ˜ n )0in  E .

 □

Let u n 1 = u n u ˜ n , v n 1 = v n v ˜ n , then u n u= u n 1 +( u ˜ n u), v n v= v n 1 +( v ˜ n v). From (3.1), we get ( u n , v n )(u,v) in E if and only if ( u n 1 , v n 1 )(0,0) in E.

Observe that

I λ ( u n 1 , v n 1 ) 1 p I λ ( u n 1 , v n 1 ) ( u n 1 , v n 1 ) = ( 1 p 1 p ) λ R N K ( x ) ( | u n 1 | p + | v n 1 | p ) + λ p R N ( | u n 1 | p H s ( | u n 1 | p , | v n 1 | p ) + | v n 1 | p H t ( | u n 1 | p , | v n 1 | p ) H ( | u n 1 | p , | v n 1 | p ) ) λ N R N K ( x ) ( | u n 1 | p + | v n 1 | p ) λ N K min R N ( | u n 1 | p + | v n 1 | p ) ,

where K min = inf x R N K(x)>0. Furthermore, we get

( u n 1 , v n 1 ) p p N ( c I λ ( u , v ) ) λ K min +o(1).
(3.2)

Now, we consider the energy level of the functional I λ below which the ( PS ) c condition holds.

Let V b (x):=max{V(x),b}, where b is a positive constant in the assumption ( V 0 ). Since the set ν b has finite measure, we get

R N V(x) ( | u n 1 | p + | v n 1 | p ) = R N V b (x) ( | u n 1 | p + | v n 1 | p ) +o(1).
(3.3)

In connection with the assumptions ( H 1 )-( H 3 ) and the Young inequality, there exists C b >0 such that

(3.4)

Let S be the best Sobolev constant of the immersion

S u p p R N | u | p for all u W 1 , p ( R N ) .

Proof of Proposition 3.1 Assume that ( u n , v n )(u,v), then

lim inf n ( u n 1 , v n 1 ) E >0

and

c I λ (u,v)>0.

By the Sobolev embedding inequality and the diamagnetic inequality, we get

S ( u n 1 p p + v n 1 p p ) R N ( | u n 1 | p + | v n 1 | p ) R N ( | u n 1 + i λ 1 p A ( x ) u n 1 | p + | v n 1 + i λ 1 p A ( x ) v n 1 | p ) = R N ( | u n 1 + i λ 1 p A ( x ) u n 1 | p + λ V ( x ) | u n 1 | p + | v n 1 + i λ 1 p A ( x ) v n 1 | p + λ V ( x ) | v n 1 | p ) λ R N V ( x ) ( | u n 1 | p + | v n 1 | p ) = λ R N K ( x ) ( | u n 1 | p + | v n 1 | p ) + | u n 1 | p H s ( | u n 1 | p , | v n 1 | p ) + | v n 1 | p H t ( | u n 1 | p , | v n 1 | p ) λ R N V b ( x ) ( | u n 1 | p + | v n 1 | p ) + o ( 1 ) λ b ( u n 1 p p + v n 1 p p ) + λ C b ( u n 1 p p + v n 1 p p ) λ b ( u n 1 p p + v n 1 p p ) + o ( 1 ) = λ C b ( u n 1 p p + v n 1 p p ) + o ( 1 ) .

This, together with (3.2), gives

S λ C b ( u n 1 p p + v n 1 p p ) p p p + o ( 1 ) λ C b ( N ( c I λ ( u , v ) ) λ K min ) p N + o ( 1 ) = λ 1 p N C b ( N K min ) p N ( c I λ ( u , v ) ) p N + o ( 1 ) .

Set α 0 = S N p C b N p N 1 K min , then

α 0 λ 1 N p c I λ (u,v)+o(1).

This completes the proof of Proposition 3.1. □

Proof of Proposition 3.2 Since c α 0 λ 1 N p , we have

c I λ (u,v) α 0 λ 1 N p I λ (u,v).

In connection with I λ (u,v)0 and Proposition 3.1, we complete this proof. □

4 The mountain-pass structure

In the following, we always consider λ1. We will prove that I λ possesses the mountain-pass structure which has been carefully discussed in the works [37, 38].

Lemma 4.1 Let the assumptions of Theorem  2 be satisfied. There exist α λ , ρ λ >0 such that

I λ (u,v)>0if 0< ( u , v ) E < ρ λ and I λ (u,v) α λ if  ( u , v ) E = ρ λ .

Proof By (3.4), for any δ>0, there is C δ >0 such that

R N G(u,v)δ ( u p p + v p p ) + C δ ( u p p + v p p ) .

Thus,

I λ ( u , v ) = 1 p ( u , v ) E p λ R N G ( u , v ) 1 p ( u , v ) E p λ δ ( u p p + v p p ) λ C δ ( u p p + v p p ) .

In connection with u p p + v p p C 1 ( u , v ) E p , we may choose δ ( 2 p λ C 1 ) 1 such that

I λ (u,v) 1 2 p ( u , v ) E p λ C δ ( u p p + v p p ) .

The fact p >p implies the desired conclusion. □

Lemma 4.2 Under the assumptions of Lemma  4.1, for any finite dimensional subspace FE, we have

I λ (u,v)as (u,v)F, ( u , v ) E .

Proof Together with the fact H(s,t)p a 0 ( | s | α p + | t | β p ), we have

I λ (u,v) 1 p ( u , v ) E p λ a 0 ( u α α + v β β ) for all (u,v)E.

Since all norms in a finite-dimensional space are equivalent and α,β>p, we complete the proof. □

In the following, we will find special finite-dimensional subspaces by which we establish sufficiently small mini-max levels.

Define the functional

Φ λ (u,v)= 1 p ( u , v ) E p λ a 0 R N ( | u | α + | v | β ) .

Obviously, it follows that Φ λ C 1 (E) and I λ (u,v) Φ λ (u,v) for all (u,v)E.

Observe that

inf { R N | ϕ | p : ϕ C 0 ( R N , R ) , ϕ L α ( R N ) = 1 } =0

and

inf { R N | ψ | p : ψ C 0 ( R N , R ) , ψ L β ( R N ) = 1 } =0.

Then, for any δ>0, there are ϕ δ , ψ δ C 0 ( R N ,R) with ϕ δ L α ( R N ) = ψ δ L β ( R N ) =1 and supp ϕ δ ,supp ψ δ B r δ (0) such that ϕ δ p p , ψ δ p p <δ.

Set e λ (x)=( ϕ δ ( λ p x), ψ δ ( λ p x)). Then supp e λ B λ 1 p r δ (0). For t0, we get

Φ λ ( t e λ ) = t p p e λ E p a 0 λ t α R N | ϕ δ ( λ p x ) | α a 0 λ t β R N | ψ δ ( λ p x ) | β = λ 1 N p J λ ( t ϕ δ , t ψ δ ) ,

where

J λ ( u , v ) = 1 p R N ( | u | p + | v | p + ( A ( λ 1 p x ) + V ( λ 1 p x ) ) ( | u | p + | v | p ) ) a 0 R N ( | u | α + | v | β ) .

By direct computation, we have

max t 0 J λ ( t ϕ δ , t ψ δ ) α p p α ( α a 0 ) p α p { R N ( | ϕ δ | p + ( A ( λ 1 p x ) + V ( λ 1 p x ) ) | ϕ δ | p ) } α α p + β p p β ( β a 0 ) p β p { R N ( | ψ δ | p + ( A ( λ 1 p x ) + V ( λ 1 p x ) ) | ψ δ | p ) } β β p .

Since A(0)=0, V(0)=0 and ϕ δ p p , ψ δ p p <δ, we know that there is Λ δ >0 such that for all λ Λ δ , we have

max t 0 I λ (t ϕ δ ,t ψ δ ) ( α p p α ( α a 0 ) p α p ( 5 δ ) α α p + β p p β ( β a 0 ) p β p ( 5 δ ) β β p ) λ 1 N p .
(4.1)

Lemma 4.3 For any σ>0, there is Λ σ >0 such that λ Λ σ , there is w ¯ λ E with w ¯ λ E > ρ λ , I λ ( w ¯ λ )0 and

max t 0 I λ (t w ¯ λ )σ λ 1 N p ,

where ρ λ is defined in Lemma  4.1.

Proof This proof is similar to that of Lemma 4.3 in [7], so we omit the details. □

5 Proof of Theorem 2

Proof By using Lemma 4.3, for any σ>0 with 0<σ< α 0 , we choose Λ σ >0 and define the mini-max level

c λ = inf γ Γ λ max t [ 0 , 1 ] I λ ( γ ( t ) ) σ λ 1 N p for all λ Λ σ ,

where Γ λ ={γC([0,1],E):γ(0)=0,γ(1)= w ¯ λ }.

By Proposition 3.1, we know that I λ satisfies the ( PS ) c λ condition. Hence, by the mountain-pass theorem, there is ( u λ , v λ )E such that I λ ( u λ , v λ )= c λ and I λ ( u λ , v λ )=0. This shows ( u λ , v λ ) is a weak solution of (2.1).

Moreover, note that I λ ( u λ , v λ )σ λ 1 N p and I λ ( u λ , v λ )=0. Then

I λ ( u λ , v λ ) = I λ ( u λ , v λ ) 1 θ I λ ( u λ , v λ ) ( u λ , v λ ) = ( 1 p 1 θ ) ( u λ , v λ ) E p + ( 1 θ 1 p ) λ R N K ( x ) ( | u λ | p + | v λ | p ) + λ R N ( 1 θ ( | u λ | p H s ( | u λ | p , | v λ | p ) + | v λ | p H t ( | u λ | p , | v λ | p ) ) 1 p H ( | u λ | p , | v λ | p ) ) ( 1 p 1 θ ) ( u λ , v λ ) E p .

Furthermore, together with the diamagnetic inequality, we prove that ( u λ , v λ ) satisfies the estimate (2.2). The proof is complete. □

References

  1. 1.

    Ambrosetti A, Rabinowitz PH: Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14: 349-381. 10.1016/0022-1236(73)90051-7

    MathSciNet  Article  Google Scholar 

  2. 2.

    Benci V: On critical point theory of indefinite functions in the presence of symmetries. Trans. Am. Math. Soc. 1982, 274: 533-572. 10.1090/S0002-9947-1982-0675067-X

    MathSciNet  Article  Google Scholar 

  3. 3.

    Brézis H, Nirenberg L: Positive solutions of nonlinear elliptic equation involving critical Sobolev exponents. Commun. Pure Appl. Math. 1983, 16: 437-477.

    Article  Google Scholar 

  4. 4.

    Cingolani S, Nolasco M: Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equation. Proc. R. Soc. Edinb. 1998, 128: 1249-1260. 10.1017/S030821050002730X

    MathSciNet  Article  Google Scholar 

  5. 5.

    Del Pino M, Felmer PL: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 1997, 149: 245-265. 10.1006/jfan.1996.3085

    MathSciNet  Article  Google Scholar 

  6. 6.

    Del Pino M, Felmer PL: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1998, 15: 127-149. 10.1016/S0294-1449(97)89296-7

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ding YH, Lin FH: Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. 2007, 30: 231-249. 10.1007/s00526-007-0091-z

    MathSciNet  Article  Google Scholar 

  8. 8.

    Guedda M, Veron L: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 1989, 12: 879-902.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Jeanjean L, Tanaka K: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 2004, 21: 287-318.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kang X, Wei JC: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 2000, 5: 899-928.

    MathSciNet  Google Scholar 

  11. 11.

    Li YY: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 1997, 2: 955-980.

    Google Scholar 

  12. 12.

    Oh YG: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 1990, 131: 223-253. 10.1007/BF02161413

    Article  Google Scholar 

  13. 13.

    Oh YG:Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class ( V ) a . Commun. Partial Differ. Equ. 1988, 13: 1499-1519. 10.1080/03605308808820585

    Article  Google Scholar 

  14. 14.

    Pistoia A: Multi-peak solutions for a class of some results on a class of nonlinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 2002, 9: 69-91. 10.1007/s00030-002-8119-8

    MathSciNet  Article  Google Scholar 

  15. 15.

    Floer A, Weinstein A: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 1986, 69: 397-408. 10.1016/0022-1236(86)90096-0

    MathSciNet  Article  Google Scholar 

  16. 16.

    Esteban M, Lions PL: Stationary solutions of nonlinear Schrödinger equation with an external magnetic field. In Partial Differential Equations and the Calculus of Variations, Essays in Honor of E. De Giorgi. Brikhäuser, Basel; 1990:369-408.

    Google Scholar 

  17. 17.

    Arioli G, Szulkin A: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 2003, 170: 277-295. 10.1007/s00205-003-0274-5

    MathSciNet  Article  Google Scholar 

  18. 18.

    Bartsch T, Dancer EN, Peng S: On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv. Differ. Equ. 2006, 11: 781-812.

    MathSciNet  Google Scholar 

  19. 19.

    Cao D, Tang Z: Existence and uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields. J. Differ. Equ. 2006, 222: 381-424. 10.1016/j.jde.2005.06.027

    MathSciNet  Article  Google Scholar 

  20. 20.

    Cingolani S: Semiclassical stationary states of nonlinear Schrödinger equation with an external magnetic field. J. Differ. Equ. 2003, 188: 52-79. 10.1016/S0022-0396(02)00058-X

    MathSciNet  Article  Google Scholar 

  21. 21.

    Han P: Solutions for singular critical growth Schrödinger equation with magnetic field. Port. Math. 2006, 63: 37-45.

    MathSciNet  Google Scholar 

  22. 22.

    Kurata K: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 2000, 41: 763-778. 10.1016/S0362-546X(98)00308-3

    MathSciNet  Article  Google Scholar 

  23. 23.

    Alves CO, Ding YH: Multiplicity of positive solutions to a p -Laplacian equation involving critical nonlinearity. J. Math. Anal. Appl. 2003, 279: 508-521. 10.1016/S0022-247X(03)00026-X

    MathSciNet  Article  Google Scholar 

  24. 24.

    Gloss E: Existence and concentration of bound states for a p -Laplacian equation in R N . Adv. Nonlinear Stud. 2010, 10: 273-296.

    MathSciNet  Google Scholar 

  25. 25.

    Liu CG, Zheng YQ: Existence of nontrivial solutions for p -Laplacian equations in R N . J. Math. Anal. Appl. 2011, 380: 669-679. 10.1016/j.jmaa.2011.02.064

    MathSciNet  Article  Google Scholar 

  26. 26.

    Manásevich R, Mawhin J: Boundary value problems for nonlinear perturbations of vector p -Laplacian-like operators. J. Korean Math. Soc. 2000, 5: 665-685.

    Google Scholar 

  27. 27.

    Zhang HX, Liu WB: Existence of nontrivial solutions to perturbed p -Laplacian system in R N involving critical nonlinearity. Bound. Value Probl. 2012., 2012: Article ID 53

    Google Scholar 

  28. 28.

    Dinu TL: Entire solutions of Schrödinger systems with discontinuous nonlinearity and sign-changing potential. Math. Model. Anal. 2006, 13(3):229-242.

    MathSciNet  Google Scholar 

  29. 29.

    Dinu TL: Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev space with variable exponent. Nonlinear Anal. 2006, 65(7):1414-1424. 10.1016/j.na.2005.10.022

    MathSciNet  Article  Google Scholar 

  30. 30.

    Gazzola F, Radulescu V: A nonsmooth critical point theory approach to some nonlinear elliptic equations in unbounded domains. Differ. Integral Equ. 2000, 13: 47-60.

    MathSciNet  Google Scholar 

  31. 31.

    Ghanmi A, Maagli H, Radulescu V, Zeddini N: Large and bounded solutions for a class of nonlinear Schrödinger stationary systems. Anal. Appl. 2009, 7: 391-404. 10.1142/S0219530509001463

    MathSciNet  Article  Google Scholar 

  32. 32.

    Rabinowitz PH: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 1992, 43: 270-291. 10.1007/BF00946631

    MathSciNet  Article  Google Scholar 

  33. 33.

    Mawhin J, Willem M: Critical Point Theory and Hamiltonian Systems. Springer, New York; 1989.

    Book  Google Scholar 

  34. 34.

    Ghoussoub N, Yuan C: Multiple solutions for quasi-linear PDES involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 2000, 352: 5703-5743. 10.1090/S0002-9947-00-02560-5

    MathSciNet  Article  Google Scholar 

  35. 35.

    Li YY, Guo QQ, Niu PC: Global compactness results for quasilinear elliptic problems with combined critical Sobolev-Hardy terms. Nonlinear Anal. 2011, 74: 1445-1464. 10.1016/j.na.2010.10.018

    MathSciNet  Article  Google Scholar 

  36. 36.

    Brézis H, Lieb E: A relation between pointwise convergence of functions and convergence of functional. Proc. Am. Math. Soc. 1983, 88: 486-490.

    Article  Google Scholar 

  37. 37.

    Pucci P, Radulescu V: The impact of the mountain pass theory in nonlinear analysis: a mathematical survey. Boll. Unione Mat. Ital., Ser. IX 2010, 3: 543-584.

    MathSciNet  Google Scholar 

  38. 38.

    Radulescu V Contemporary Mathematics and Its Applications. In Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic and Variational Methods. Hindawi Publ. Corp, New York; 2008.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the referees for their precious comments and suggestions about the original manuscript. This research is supported by the National Natural Science Foundation of China (11271364) and the Fundamental Research Funds for the Central Universities (2012QNA46).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huixing Zhang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally in this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zhang, H., Liu, J. & Liu, W. Existence of nontrivial solutions for perturbed p-Laplacian system involving critical nonlinearity and magnetic fields. Bound Value Probl 2013, 11 (2013). https://doi.org/10.1186/1687-2770-2013-11

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2013-11

Keywords

  • p-Laplacian system
  • critical nonlinearity
  • magnetic fields
  • variational method