You are viewing the new article page. Let us know what you think. Return to old version

# Multiple solutions of semilinear elliptic systems on the Heisenberg group

## Abstract

In this paper, a class of semilinear elliptic systems which have a strong resonance at the first eigenvalue on the Heisenberg group is considered. Under certain assumptions, by virtue of the variational methods, the multiple weak solutions of the systems are obtained.

MSC:35J20, 35J25, 65J67.

## 1 Introduction

Let $H N$ be the space $R N × R N ×R$ equipped with the following group operation:

$η∘ η ′ =(x,y,t)∘ ( x ′ , y ′ , t ′ ) = ( x + x ′ , y + y ′ , t + t ′ + 2 ( x ′ ⋅ y − x ⋅ y ′ ) ) ,$

where ‘’ denotes the usual inner-product in $R N$. This operation endows $H N$ with the structure of a Lie group. The vector fields $X 1 ,…, X N$, $Y 1 ,…, Y N$, T, given by

$X j = ∂ ∂ x j +2 y j ∂ ∂ t , Y j = ∂ ∂ y j −2 x j ∂ ∂ t ,T= ∂ ∂ t ,$

form a basis for the tangent space at $η=(x,y,t)$.

Definition 1.1 The Heisenberg Laplacian is by definition

$Δ H = ∑ j = 1 N ( X j 2 + Y j 2 ) ,$

and let $∇ H u$ denote the 2N-vector $( X 1 u,…, X N u, Y 1 u,…, Y N u)$.

Definition 1.2 The space $S 0 1 , 2 (Ω)$ is defined as the completion of $C 0 ∞ (Ω)$ in the norm

$∥ u ∥ S 0 1 , 2 2 = ∫ Ω ∑ j = 1 N ( | X j u | 2 + | Y j u | 2 ) = ∫ Ω | ∇ H u | 2 .$

Some existence and nonexistence for the semilinear equations or systems on the Heisenberg group have been studied by Garofalo, Lanconelli and Niu, see [1, 2], etc.

In this paper, we study the problems on the existence and multiplicity of solutions for the system

${ − Δ H ( u v ) = λ 1 ( a ( x ) b ( x ) b ( x ) d ( x ) ) ( u v ) − ( f ( x , u , v ) g ( x , u , v ) ) , x ∈ Ω , u = v = 0 , x ∈ ∂ Ω ,$
(1.1)

where $Ω⊆ H N$ is a bounded smooth domain, $a,b,d∈ C 0 ( Ω ¯ ,R)$ and $f,g∈ C 1 ( Ω ¯ × R 2 ,R)$. Moreover, we assume that there is some function $F(x,u,v)∈ C 2 ( Ω ¯ × R 2 ,R)$ such that $∇F= ( f g )$. Here F denotes the gradient in the variable u and v, i.e., $∂ F ∂ u =f$, $∂ F ∂ v =g$.

In fact, the condition in $R N$ was studied by da Silva; we can see . In this paper we study the problem on the Heisenberg group $H N$. The elliptic problems at resonance have been studied by many authors; see .

We use the variation methods to solve problem (1.1). Finding weak solutions of (1.1) in $E= S 0 1 , 2 (Ω)× S 0 1 , 2 (Ω)$ is equivalent to finding critical points of the $C 2$ functional given by

$I(h)= 1 2 ∥ h ∥ 2 − 1 2 ∫ Ω 〈Ah,h〉+ ∫ Ω F(x,h),$
(1.2)

where

$h∈E,h=( h ( 1 ) h ( 2 ) ), ∥ h ∥ 2 = ∫ Ω | ∇ H h ( 1 ) | 2 + | ∇ H h ( 2 ) | 2 ,$

and $〈⋅,⋅〉$ denotes the usual inner product in $R 2$.

We introduce the eigenvalue problem with weights. Let us denote by $A$ the set of all continuous, cooperative and symmetric matrices A of order 2, given by

$A(x)=( a ( x ) b ( x ) b ( x ) d ( x ) ),$

where the functions $a,b,d∈C( Ω ¯ ,R)$ satisfy the following conditions:

(A1) $A(x)$ is cooperative, that is, $b(x)≥0$.

(A2) There is an $x 0 ∈Ω$ such that $a( x 0 )>0$ or $d( x 0 )>0$.

Given $A∈A(Ω)$, consider the weighted eigenvalue problem

if $A∈A(Ω)$. By virtue of the spectral theory for compact operators, we obtain the sequence of eigenvalues

$0< λ 1 < λ 2 ≤ λ 3 ≤⋯$

such that $λ k →+∞$ as $k→∞$; see [6, 8, 9]. Here, each eigenvalue $λ k$, $k≥1$ has finite multiplicity, and we have

$1 λ k =sup { ∫ Ω 〈 A h , h 〉 , ∥ h ∥ = 1 , h ∈ V k − 1 ⊥ } ,$

where $V k =span{ Φ 1 ,…, Φ k }$ with $k≥1$.

Remark 1.1

1. (1)

$E= V k ⊕ V k ⊥$ for $k≥1$.

2. (2)

The following variational inequalities hold:

$∥ h ∥ 2 ≤ λ k ∫ Ω 〈Ah,h〉,∀h∈ V k ,k≥1,$
(1.3)
$∥ h ∥ 2 ≥ λ k + 1 ∫ Ω 〈Ah,h〉,∀h∈ V k ⊥ ,k≥0.$
(1.4)

The variational inequalities will be used in the next section. We would like to mention that the $Φ 1$ is positive in Ω. In the paper, without loss of generality, we assume that $λ 1 =1$.

We now state the assumptions and the main results in this paper. Firstly, we define the following functions:

${ T + = lim inf ( u , v ) → ( ∞ , ∞ ) F ( x , u , v ) , S + = lim sup ( u , v ) → ( ∞ , ∞ ) F ( x , u , v ) , T − = lim inf ( u , v ) → ( − ∞ , − ∞ ) F ( x , u , v ) , S − = lim sup ( u , v ) → ( − ∞ , − ∞ ) F ( x , u , v ) .$
(1.5)

The above functions belong to $L 1 (Ω)$ and the limits are taken a.e. and uniformly in $x∈Ω$.

Now we make the following basic hypotheses:

(E0) There exists $k∈C( Ω ¯ )$ such that

(E1) $F(x,h)≥ 1 2 (1− λ 2 )〈Ah,h〉+ b 1 | Ω | − 1$, $b 1 ≥0$, $∀(x,h)∈Ω× R 2$.

(E2) $〈Ah,h〉≥0$, $∀(x,h)∈Ω× R 2$.

(E3) There exist $α∈(0,1)$ and $δ>0$ such that

(E4) $∫ Ω S + ≤0$ and $∫ Ω S − ≤0$.

(E5) There exists $t 0 ∈R$ such that

$∫ Ω F(x, t 0 Φ 1 )

(E6) There are $t 1 − <0$ and $t 1 + >0$ such that

$∫ Ω F ( x , t 1 ± Φ 1 )

We can prove that the associated functional J has the saddle geometry. Actually, we have the following results.

Theorem 1.1 Let $Ω⊆ H N$ be a bounded smooth domain, $a(x),b(x),d(x)∈ C 0 ( Ω ¯ ,R)$ and $f(x,u,v),g(x,u,v)∈ C 1 ( Ω ¯ × R 2 ,R)$. Assume that there is some function $F(x,u,v)∈ C 2 ( Ω ¯ × R 2 ,R)$ such that $∂ F ∂ u =f$, $∂ F ∂ v =g$. Furthermore, if the conditions (E0), (E1), (E2) are satisfied, problem (1.1) has at least one solution $z 1 ∈E$.

Remark 1.2 For the hypotheses $∇F(x,0,0)≡0$ and $F(x,0,0)≡0$, problem (1.1) admits the trivial solution $(u,v)=0$. In this case, the main point is to assure the existence of nontrivial solutions.

Theorem 1.2 Let $Ω⊆ H N$ be a bounded smooth domain, $a(x),b(x),d(x)∈ C 0 ( Ω ¯ ,R)$ and $f(x,u,v),g(x,u,v)∈ C 1 ( Ω ¯ × R 2 ,R)$. Assume that there is some function $F(x,u,v)∈ C 2 ( Ω ¯ × R 2 ,R)$ such that $∂ F ∂ u =f$, $∂ F ∂ v =g$. Furthermore, if the conditions (E0), (E2), (E3), (E4) and (E5) are satisfied, then problem (1.1) has at least two nontrivial solutions.

Theorem 1.3 Let $Ω⊆ H N$ be a bounded smooth domain, $a(x),b(x),d(x)∈ C 0 ( Ω ¯ ,R)$ and $f(x,u,v),g(x,u,v)∈ C 1 ( Ω ¯ × R 2 ,R)$. Assume that there is some function $F(x,u,v)∈ C 2 ( Ω ¯ × R 2 ,R)$ such that $∂ F ∂ u =f$, $∂ F ∂ v =g$. Furthermore, if the conditions (E0), (E1), (E2), (E3), (E4) and (E6) are satisfied, then problem (1.1) has at least three nontrivial solutions.

## 2 Preliminaries and fundamental lemmas

In this section, we prove some lemmas needed in the proof of our main theorems.

We first introduce the Folland-Stein embedding theorem (see ) as follows.

Lemma 2.1 Let $Ω⊆ H N$ be a bounded domain and let $Q=2N+2$. Then $S 0 1 , 2 (Ω)$ compactly embedding in $L p (Ω)$, where $2≤p< 2 Q Q − 2$.

To establish Lemmas 2.7 and 2.8, we introduce the following corollary of the Ekeland variation principle (see ).

Lemma 2.2 X is a metric space, $I∈ C 1 (X,R)$ is bounded from below, which satisfies the $( P S ) c$ condition, then $c= inf x ∈ X E(x)$ is a critical value of E.

Next, we describe some results under the geometry for the functional I.

Lemma 2.3 Under hypotheses (E0) and (E1), the functional I has the following saddle geometry:

(L3-1) $I(h)→∞$ if $∥h∥→∞$ with $h∈ V 1 ⊥$.

(L3-2) There is $α∈R$ such that $I(h)≤α$, $∀z∈ V 1$.

(L3-3) $I(h)≥ b 1$, $∀z∈ V 1 ⊥$.

Proof (L3-1). From (1.2), (1.4) we have

$I(h)≥ 1 2 ( 1 − 1 λ 2 ) ∥ h ∥ 2 + ∫ Ω F(x,h),h∈ V 1 ⊥ .$

Using (E0), we have $J(h)→∞$, as $∥h∥→∞$.

(L3-2). By simple calculation, we get

$I(h)= ∫ Ω F(x,h),h∈ V 1 .$

By using (E0), we have

$I(h)= ∫ Ω F(x,h)≤ ∫ Ω k(x).$

So, we choose $α= ∫ Ω k(x)$.

(L3-3). By (E1) and the variational inequality (1.4), we have

$I ( h ) = 1 2 ∥ h ∥ 2 − 1 2 ∫ Ω 〈 A h , h 〉 + ∫ Ω F ( x , h ) ≥ 1 2 ∥ h ∥ 2 − λ 2 2 ∫ Ω 〈 A h , h 〉 + b 1 ≥ b 1 , ∀ z ∈ V 1 ⊥ ,$

the proof of this lemma is completed. □

Next, we prove the Palais-Smale conditions at some levels for the functional I. We recall that I: $E→R$ is said to satisfy the Palais-Smale conditions at the level $c∈R$ ($( P S ) c$ in short) if any sequence ${ h n }⊆E$ such that

$I( h n )→c, I ′ ( h n )→0,$

as $n→∞$, possesses a convergent subsequence in E. Moreover, we say that I satisfies the (PS) conditions when we have $( P S ) c$ for all $c∈R$.

Lemma 2.4 Assume that the condition (E0) holds. Then the functional I has the $( P S ) c$ conditions whenever $c or $c>max{ ∫ Ω S + , ∫ Ω S − }$.

Proof We only prove the condition for all $c. For the case $c>max{ ∫ Ω S + , ∫ Ω S − }$, we can use similar methods.

1. 1.

Boundedness of the (PS) sequence.

The proof is by contradiction. Suppose that there exists a $( P S ) c$ unbounded sequence ${ h n }∈E$ such that $c. For the ease of notation and without loss of generality, we assume that

$∥ h n ∥→∞$,

$I( h n )→c$,

$I ′ ( h n )→0$, $n→∞$.

We define $h ¯ n = h n ∥ h n ∥$, hence there is an $h ¯ ∈E$ with the following properties:

$h ¯ n ⇀ h ¯$ in E,

$h ¯ n → h ¯$ in $L p (Ω)× L p (Ω)$, where $2≤p< 2 ∗$ and $2 ∗ = 2 N + 2 N$,

$h ¯ n → h ¯$ a.e. in Ω.

For any $Φ∈E$, obviously $I ′ ( h n ) Φ ∥ h n ∥ →0$. By simple calculation, it is easy to obtain

$I ′ ( h n )Φ= ∫ Ω 〈 ∇ H h n , ∇ H Φ〉− ∫ Ω 〈A h n ,Φ〉+ ∫ Ω 〈 ∇ F ( x , h n ) , Φ 〉 ,$

where $h n = ( h n ( 1 ) h n ( 2 ) )$, $Φ= ( Φ ( 1 ) Φ ( 2 ) )$. We have

From the convergence of ${ h ¯ n }$, we have

$∫ Ω 〈 ∇ H h ¯ , ∇ H Φ〉= ∫ Ω 〈A h ¯ ,Φ〉.$

We see that $λ 1 =1$, and by the definition of $λ 1$, we obtain that $h ¯ =± Φ 1$. So, we suppose initially that $h ¯ = Φ 1$. Because $Φ 1$ is positive, i.e., $Φ 1 ( 1 ) >0$, $Φ 1 ( 2 ) >0$, it is obvious that $h n ( 1 ) →∞$, $h n ( 2 ) →∞$, $∀x∈Ω$ as $n→∞$.

Hence, we can take $h n = t n Φ 1 + ω n$, where ${ t n }∈R$, ${ ω n }∈ V 1 ⊥$, and we have

$I ( h n ) = 1 2 ∥ t n Φ 1 + ω n ∥ 2 − 1 2 ∫ Ω 〈 A ( t n Φ 1 + ω n ) , t n Φ 1 + ω n 〉 + ∫ Ω F ( x , h n ) = 1 2 ∥ ω n ∥ 2 − ∫ Ω 〈 A ω n , ω n 〉 + ∫ Ω F ( x , h n ) .$

Using (1.4), we obtain

$I( h n )≥ 1 2 ( 1 − 1 λ 2 ) ∥ ω n ∥ 2 + ∫ Ω F(x, h n ).$
(2.1)

Since $I( h n )→c$, it is easy to obtain that the sequence ${ ω n }$ is bounded. On the other hand, because of $∥ h n ∥→∞$, on a subsequence $| t n |→∞$, without loss of generality, we assume $t n →−∞$.

Now, using Hölder’s inequality and (E0), we have

$| ∫ Ω ∇F(x, h n ) ω n |≤C ( ∫ Ω | ∇ F ( x , h n ) | 2 ) 1 2 .$

Thus, applying the dominated convergence theorem, we conclude that

$lim n → ∞ ∫ Ω ∇F(x, h n ) ω n =0.$
(2.2)

On the other hand,

$I ′ ( h n ) ω n = ∫ Ω 〈 ∇ H h n , ∇ H ω n 〉 − ∫ Ω 〈 A h n , ω n 〉 + ∫ Ω 〈 ∇ F ( x , h n ) , ω n 〉 = ∥ ω n ∥ 2 − ∫ Ω 〈 A h n , ω n 〉 + ∫ Ω 〈 ∇ F ( x , h n ) , ω n 〉 .$

Using (2.2), (1.4), we obtain

$( 1 − 1 λ 2 ) ∥ ω n ∥ 2 ≤ | I ′ ( h n ) ω n | + | ∫ Ω 〈 ∇ F ( x , h n ) , ω n 〉 | →0$

as $n→∞$. Therefore, by variational inequalities (1.3) and (1.4), we obtain that

Consequently, by virtue of Fatou’s lemma and (E0), we have

$c = lim n → ∞ ( 1 2 ∥ ω n ∥ 2 − ∫ Ω 〈 A ω n , ω n 〉 + ∫ Ω F ( x , h n ) ) = lim inf n → ∞ ∫ Ω F ( x , t n Φ 1 + ω n ) ≥ ∫ Ω lim inf n → ∞ F ( x , t n Φ 1 + ω n ) = ∫ Ω T − ,$

which contradicts the condition $c. Hence, the $( P S ) c$ sequence is bounded.

1. 2.

Various convergence of ${ h n }$.

Since ${ h n }$ is a bounded sequence, there is an $h∈E$ with the following properties:

$h n ⇀h$ in E,

$h n →h$ in $L p (Ω)× L p (Ω)$, where $2≤p< 2 ∗$ and $2 ∗ = 2 N + 2 N$,

$h n →h$ a.e. in Ω.

1. 3.

${ h n }$ convergence to h in E.

From the definition of $( P S ) c$ sequence, we have, as $n→∞$,

$I ′ ( h n ) h = ∫ Ω 〈 ∇ H h n , ∇ H h 〉 − ∫ Ω 〈 A h n , h 〉 + ∫ Ω 〈 ∇ F ( x , h n ) , h 〉 → 0 , I ′ ( h n ) h n = ∫ Ω | ∇ H h n | 2 − ∫ Ω 〈 A h n , h n 〉 + ∫ Ω 〈 ∇ F ( x , h n ) , h n 〉 → 0 .$

By Fatou’s lemma and the above convergence of ${ h n }$, it is easy to show that

$∫ Ω 〈 A h n , h 〉 → ∫ Ω 〈 A h , h 〉 , ∫ Ω 〈 ∇ F ( x , h n ) , h 〉 → ∫ Ω 〈 ∇ F ( x , h ) , h 〉 , ∫ Ω 〈 A h n , h n 〉 → ∫ Ω 〈 A h , h 〉 , ∫ Ω 〈 ∇ F ( x , h n ) , h n 〉 → ∫ Ω 〈 ∇ F ( x , h ) , h 〉$

as $n→∞$. Hence, we have

(2.3)
(2.4)

By weak convergence, we have

(2.5)

Using (2.3), (2.4) and (2.5), by simple calculation, we obtain

The proof is completed. □

Lemma 2.5 Suppose that (E0) and (E3) are satisfied. Then the origin is a local minimum for the functional I.

Proof Using (E3), we can choose $p∈(2, 2 ∗ )$ and a constant $C>0$ such that

$F(x,h)≥ 1 − α 2 〈Ah,h〉−C | h | p ,∀(x,h)∈Ω× R 2 .$

Consequently, we have

$I ( h ) = 1 2 ∥ h ∥ 2 − 1 2 ∫ Ω 〈 A h , h 〉 + ∫ Ω F ( x , h ) ≥ 1 2 ( 1 − α ) ∥ h ∥ 2 − C ∫ Ω | h | p ≥ 1 2 ( 1 − α ) ∥ h ∥ 2 − C ∥ h ∥ p ≥ 1 4 ( 1 − α ) ∥ h ∥ 2 , ∥ h ∥ < ρ ,$

where ρ is small enough and $0<ρ< t 0$, $t 0$ is provided by (E5). Therefore the proof has been completed. □

To complete the mountain pass geometry, we prove the following result.

Lemma 2.6 Let the hypotheses (E0), (E4) and (E5) hold. Then there exist $h 0 ∈E$ and $ρ>0$ such that $I( h 0 )<0$ and $∥ h 0 ∥>ρ$.

Proof Using (E2) and (E5), we take $h 0 = t 0 Φ 1$, where $t 0$ is provided by (E5). Thus, we obtain

$I ( t 0 Φ 1 ) = 1 2 ∥ t 0 Φ 1 ∥ 2 − 1 2 ∫ Ω 〈 A ( t 0 Φ 1 ) , t 0 Φ 1 〉 + ∫ Ω F ( x , t 0 Φ 1 ) , = ∫ Ω F ( x , t 0 Φ 1 ) < min { ∫ Ω T + , ∫ Ω T − } < max { ∫ Ω S + , ∫ Ω S − } ≤ 0 ,$

and $∥ t 0 Φ 1 ∥= t 0$. If we take $0<ρ< t 0$, then the conclusion follows. □

Lemma 2.7 Under hypotheses (E0), (E4) and (E5), problem (1.1) has at least one nontrivial solution $h 0 ∈E$. Moreover, $h 0$ has negative energy, i.e., $J( h 0 )<0$.

Proof By (E0) and (1.4), we obtain

$I(h)= 1 2 ∥ h ∥ 2 − 1 2 ∫ Ω 〈Ah,h〉+ ∫ Ω F(x,h)≥ ∫ Ω F(x,h)≥− ∫ Ω k(x).$

Therefore, the functional I is bounded below. In this case, we would like to mention that I has the $( P S ) c$ conditions with $c=inf{I(h):h∈E}$. For seeing this, by Lemma 2.4, we take $t 0 ∈R$ provided by (E5) we can obtain

$c≤I(t Φ 1 )= ∫ Ω F(x,t Φ 1 )

Consequently, applying Lemma 2.2, we have one critical point $h 0 ∈E$ such that $I( h 0 )=inf{I(h):h∈E}≤I(t Φ 1 )<0$. The proof of this lemma is completed. □

To prove Theorem 1.3, we establish the following lemma.

Lemma 2.8 Assume that the conditions (E0), (E1), (E4) and (E6) hold. Then problem (1.1) has at least two nontrivial solutions with negative energy.

Proof Define

$M + = { t Φ 1 + ω , t ≥ 0 , ω ∈ V 1 ⊥ } , M − = { t Φ 1 + ω , t ≤ 0 , ω ∈ V 1 ⊥ } .$

We have $∂ M + =∂ M − = V 1 ⊥$. Hence, we minimize the functional I restricted to $M +$ and $M −$.

Firstly, we consider the functionals $I ± =I | M ±$. Using Lemma 2.4, $I ±$ possesses the $( P S ) c$ conditions whenever $c. Therefore, we obtain that $I ±$ satisfies the $( P S ) c$ conditions with $c ± =inf{ I ± (h):h∈ M ± }$.

In this way, by using Lemma 2.2 for the functional $I ±$, we obtain two critical points which we denote by $h 0 +$ and $h 0 −$, respectively. Thus, we have $c + = I + ( h 0 + )= inf h ∈ M + {I(h)}$ and $c − = I − ( h 0 − )= inf h ∈ M − {I(h)}$.

Moreover, we affirm that $h 0 +$ and $h 0 −$ are nonzero critical points. To see this, from (E4) and (E6), we obtain that

$I ± ( h 0 ± ) ≤ I ± ( t 1 ± Φ 1 ) = ∫ Ω F ( x , t 1 ± Φ 1 )

and I restricted to $V 1 ⊥$ is nonnegative. More specifically, given $ω∈ V 1 ⊥$, using (L3-3) in Lemma 2.3, we have

$I(ω)≥ b 1 ≥0.$
(2.6)

Next, we prove that $h 0 +$ and $h 0 −$ are distinct. The proof of this affirmation is by contradiction. If $h 0 + = h 0 −$, then $h 0 + = h 0 − ∈ V 1 ⊥$. Using (2.6), we obtain $I( h 0 + )<0≤I( h 0 + )$. Therefore, we have a contradiction. Consequently, we get $h 0 + ≠ h 0 −$. Thus problem (1.1) has at least two nontrivial solutions. Moreover, these solutions have negative energy. □

## 3 Proof of main theorems

In this section, we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.1 From Lemma 2.4, the functional I satisfies the $( P S ) c$ conditions for some levels $c∈R$. Set $E= V 1 ⊕ V 1 ⊥$, where $V 1 =span{ Φ 1 }$. Using Lemma 2.3, we get that the functional I satisfies the saddle point geometry (see , Theorem 1.11). This implies that I has one critical point $h 1 ∈E$. Theorem 1.1 is proved. □

Proof of Theorem 1.2 From Lemma 2.5 and Lemma 2.6, we know that the functional I satisfies the geometric conditions of the mountain pass theorem. Moreover, the functional I satisfies the $( P S ) c$ conditions for all $c≥0$. Thus, we have a solution $h 2 ∈E$ given by the mountain pass theorem. Obviously, the solution $h 2$ satisfies $I( h 2 )>0$.

On the other hand, by Lemma 2.7, we get another solution $h 0$ and $I( h 0 )<0$. It follows that problem (1.1) has at least two nontrivial solutions. The proof is completed. □

Proof of Theorem 1.3 Since the conditions (E0), (E3), (E4) and (E5) imply that Lemma 2.5 and Lemma 2.6 hold. Thus, we have one solution $h 2$ which satisfies $I( h 2 )>0$.

On the other hand, using Lemma 2.8, we obtain two distinct critical points $h 0 ±$ such that $I( h 0 ± )<0$. Therefore, we obtain that problem (1.1) has at least three nontrivial solutions. The proof is completed. □

## References

1. 1.

Garofalo N, Lanconelli E: Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ. Math. J. 1992, 41: 71–98. 10.1512/iumj.1992.41.41005

2. 2.

Niu PC: Nonexistence for semilinear equations and systems in the Heisenberg group. J. Math. Anal. Appl. 1999, 240: 47–59. 10.1006/jmaa.1999.6574

3. 3.

Silva, DA: Multiplicity of solutions for gradient systems under strong resonance at a the first eigenvalue. arXiv:1206.7097v1. http://www.e-printatarXiv.org

4. 4.

Ahmad S, Lazer AC, Paul JL: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance. Indiana Univ. Math. J. 1976, 25: 933–944. 10.1512/iumj.1976.25.25074

5. 5.

Bartsch T, Li SJ: Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal. TMA 1997, 28: 419–441. 10.1016/0362-546X(95)00167-T

6. 6.

Furtado FE, De Paiva FO: Multiplicity of solutions for resonant elliptic systems. J. Math. Anal. Appl. 2006, 319: 435–449. 10.1016/j.jmaa.2005.06.038

7. 7.

Landesman EM, Lazer AC: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 1969/1970, 19: 609–623.

8. 8.

Chang KC: Principal eigenvalue for weight in elliptic systems. Nonlinear Anal. 2001, 46: 419–433. 10.1016/S0362-546X(00)00140-1

9. 9.

De Figueiredo DG: Positive solutions of semilinear elliptic problems. Lecture Note in Math. 957. In Differential Equations. Springer, Berlin; 1982.

10. 10.

Sara M: Infinitely many solutions of a semilinear problem for the Heisenberg Laplacian on the Hersenberg group. Manuscr. Math. 2005, 116: 357–384. 10.1007/s00229-004-0534-1

11. 11.

Willem M: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Basel; 1996.

12. 12.

Silva EA: Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal. 1991, 16: 455–477. 10.1016/0362-546X(91)90070-H

## Acknowledgements

The authors express their sincere thanks to the referees for their valuable criticism of the manuscript and for helpful suggestions. This work was supported by the National Natural Science Foundation of China (11171220) and Shanghai Leading Academic Discipline Project (XTKX2012).

## Author information

Correspondence to Gao Jia.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

We declare that all authors collaborated and dedicated the same amount of time in order to perform this article.

## Rights and permissions

Reprints and Permissions 