Errata of paper [1]. In Theorems 3.2 and 3.3 it should say m=0, *i.e.*, these theorems should read as follows.

**Theorem 3.2** *Let Condition* 3.2 *hold*. *Then problem* (3.5)-(3.6) *has a unique solution* u\in {W}^{2,p}(0,1;E(A),E) *for* {f}_{k}\in {E}_{k}, \lambda \in {S}_{\psi}, *with sufficiently large* |\lambda | *and the following coercive uniform estimate holds*:

\sum _{i=0}^{2}|\lambda {|}^{1-\frac{i}{2}}{\parallel {u}^{(i)}\parallel}_{{L}^{p}(0,1;E)}+{\parallel Au\parallel}_{{L}^{p}(0,1;E)}\le M\sum _{k=1}^{2}({\parallel {f}_{k}\parallel}_{{E}_{k}}+|\lambda {|}^{1-{\theta}_{k}}{\parallel {f}_{k}\parallel}_{E}).

(3.7)

**Theorem 3.3** *Assume Condition* 3.2 *holds*. *Then the operator* u\to \{(L+\lambda )u,{L}_{1}u,{L}_{2}u\} *for* \lambda \in {S}_{\psi ,\varkappa} *and for sufficiently large* \varkappa >0 *is an isomorphism from*

{W}^{2,p}(0,1;E(A),E)\mathit{\text{onto}}{L}^{p}(0,1;E)\times {E}_{1}\times {E}_{2}.

*Moreover*, *the following uniform coercive estimate holds*:

\begin{array}{c}\sum _{i=0}^{2}|\lambda {|}^{1-\frac{i}{2}}{\parallel {u}^{(i)}\parallel}_{{L}^{p}(0,1;E)}+{\parallel Au\parallel}_{{L}^{p}(0,1;E)}\hfill \\ \phantom{\rule{1em}{0ex}}\le C[{\parallel f\parallel}_{{L}^{,p}(0,1;E)}+\sum _{k=1}^{2}({\parallel {f}_{k}\parallel}_{{E}_{k}}+|\lambda {|}^{1-{\theta}_{k}}{\parallel {f}_{k}\parallel}_{E})].\hfill \end{array}

(3.12)