- Research
- Open Access
- Published:
Analysis of the inverse problem in a time fractional parabolic equation with mixed boundary conditions
Boundary Value Problems volume 2014, Article number: 134 (2014)
Abstract
This article deals with the mathematical analysis of the inverse coefficient problem of identifying the unknown coefficient in the linear time fractional parabolic equation , , with mixed boundary conditions , . By defining the input-output mappings and , the inverse problem is reduced to the problem of their invertibility. Hence the main purpose of this study is to investigate the distinguishability of the input-output mappings and . This work shows that the input-output mappings and have the distinguishability property. Moreover, the value of the unknown diffusion coefficient at can be determined explicitly by making use of measured output data (boundary observation) , which brings greater restriction on the set of admissible coefficients. It is also shown that the measured output data and can be determined analytically by a series representation, which implies that the input-output mappings and can be described explicitly.
1 Introduction
The inverse problem of determining an unknown coefficient in a linear parabolic equation by using over-measured data has generated an increasing amount of interest from engineers and scientist during the last few decades. This kind of problem plays a crucial role in engineering, physics and applied mathematics. The problem of recovering an unknown coefficient or coefficients in the mathematical model of physical phenomena is frequently encountered. Intensive study has been carried out on this kind of problem, and various numerical methods have been developed in order to overcome the problem of determining an unknown coefficient or coefficients [1–9]. The inverse problem of unknown coefficients in a quasi-linear parabolic equations was studied by Demir and Ozbilge [5, 6]. Moreover, the identification of the unknown diffusion coefficient in a linear parabolic equation was studied by Demir and Hasanov [7].
Fractional differential equations are generalizations of ordinary and partial differential equations to an arbitrary fractional order. By linear time-fractional parabolic equation, we mean a certain parabolic-like partial differential equation governed by master equations containing fractional derivatives in time [10, 11]. The research areas of fractional differential equations range from theoretical to applied aspects. The main goal of this study is to investigate the inverse problem of determining an unknown coefficient in a one-dimensional time fractional parabolic equation. We first obtain the unique solution of this problem using the Fourier method of separation of variables with respect to the eigenfunctions of the corresponding Sturm-Liouville eigenvalue problem under certain conditions [12]. As the next step, the noise-free measured output data are used to introduce the input-output mappings and . Finally, we investigate the distinguishability of the unknown coefficient via the above input-output mappings and .
Consider now the following initial boundary value problem:
where and the fractional derivative is defined in the Caputo-Dzherbashyan sense , , being the Riemann-Liouville fractional integral
The left and right boundary value functions and belong to . The functions and satisfy the following conditions:
-
(C1) ;
-
(C2) , , .
Under these conditions, the initial boundary value problem (1) has the unique solution defined in the domain which belongs to the space . Moreover, it satisfies the equation, initial and boundary conditions. The space contains the functions such that .
This kind of problem plays a crucial role in engineering, physics and applied mathematics since it is used successfully to model complex phenomena in various fields such as fluid mechanics, viscoelasticity, physics, chemistry and engineering. The problem of recovering an unknown coefficient or coefficients in the mathematical model of physical phenomena is frequently encountered.
Consider the inverse problem of determining the unknown coefficient from the Neumann-type measured output data at the boundary :
and the Dirichlet-type measured output data at the boundary :
Here is the solution of parabolic problem (1). The functions and are assumed to be noise-free measured output data. In this context, parabolic problem (1) will be referred to as a direct (forward) problem with the inputs and . It is assumed that the functions and belong to and satisfy the consistency conditions and .
By denoting , the set of admissible coefficients , let us introduce the input-output mappings and , where
and
Then the inverse problem with the measured output data and can be formulated as follows:
which reduces the inverse problem of determining the unknown coefficient to the problem of invertibility of the input-output mappings and . Hence this leads us to investigate the distinguishability of the unknown coefficient via the above input-output mappings. We say that the mappings and have the distinguishability property if implies and the same holds for . This, in particular, means the injectivity of inverse mappings and . In this paper, measured output data of Neumann type at the boundary and measured output data of Dirichlet type at the boundary are used in the identification of the unknown coefficient. In addition, in the determination of the unknown parameter, analytical results are obtained.
The paper is organized as follows. In Section 2, an analysis of the inverse problem with the single measured output data at the boundary is given. An analysis of the inverse problem with the single measured output data at the boundary is considered in Section 3. Finally, some concluding remarks are given in the last section.
2 An analysis of the inverse problem with given measured data
Consider now the inverse problem with one measured output data at . In order to formulate the solution of parabolic problem (1) by using the Fourier method of the separation of variables, let us first introduce an auxiliary function as follows:
by which we transform problem (1) into a problem with homogeneous boundary conditions. Hence the initial boundary value problem (1) can be rewritten in terms of in the following form:
The unique solution of the initial-boundary value problem can be represented in the following form [12]:
where
Moreover, , being the generalized Mittag-Leffler function defined by
Assume that is the solution of the following Sturm-Liouville problem:
The Neumann-type measured output data at the boundary in terms of can be written in the following form:
In order to arrange the above solution, let us define the following:
The solution in terms of and can then be rewritten in the following form:
Differentiating both sides of the above identity with respect to x and substituting yields
Taking into account the over-measured data ,
is obtained, which implies that can be determined analytically. Substituting into this yields
Hence we obtain the following explicit formula for the value of the unknown coefficient
Under the determined value , the set of admissible coefficients can be defined as follows:
The right-hand side of identity (4) defines the input-output mapping on the set of admissible source functions
The following lemma implies the relation between the parameters at and the corresponding outputs , .
Lemma 1 Let and be the solutions of direct problem (2), corresponding to the admissible parameters . If , , are the corresponding outputs. If the condition , then the outputs , , satisfy the following integral identity:
for each , where , .
Proof By using identity (4), the measured output data , , can be written as follows:
respectively. Note that the definition of implies that . Hence, the difference of these formulas implies the desired result. □
The lemma and the definitions of and given above enable us to reach the following conclusion.
Corollary 1 Let the conditions of Lemma 1 hold. If in addition
holds, where
then , .
Proof If ,  , then . If , then . Since depends on , then from the uniqueness of solution .
Since , form a basis for the space and ,  , then implies that at least for some . Hence by Lemma 1 we conclude that , which leads us to the following consequence: implies that . □
Theorem 1 Let conditions (C1), (C2) hold. Assume that is the input-output mapping defined by (4) and corresponding to the measured output . In this case the mapping has the distinguishability property in the class of admissible parameters , i.e.,
3 An analysis of the inverse problem with given measured data
Consider now the inverse problem with one measured output data at . Taking into account the over-measured data ,
is obtained, which implies that can be determined analytically.
The set of admissible coefficients can be defined as follows:
The right-hand side of identity (5) defines the input-output mapping on the set of admissible parameters :
The following lemma implies the relation between the parameters at and the corresponding outputs , .
Lemma 2 Let and be the solutions of direct problem (2), corresponding to the admissible parameters . If , , are the corresponding outputs. The outputs , , satisfy the following integral identity:
for each , where , .
Proof By using identity (5), the measured output data , , can be written as follows:
respectively. Note that the definition of implies that . Hence, the difference of these formulas implies the desired result. □
The lemma and the definitions given above enable us to reach the following conclusion.
Corollary 2 Let the conditions of Lemma 2 hold. If, in addition,
holds, where
then , .
Proof If ,  , then . If , then . Since depends on , then from the uniqueness of solution .
Since , form a basis for the space and ,  , then implies that at least for some . Hence by Lemma 2 we conclude that , which leads us to the following consequence: implies that . □
Theorem 2 Let conditions (C1), (C2) hold. Assume that is the input-output mapping defined by (6) and corresponding to the measured output . In this case the mapping has the distinguishability property in the class of admissible parameters , i.e.,
4 Conclusion
The aim of this study was to investigate the distinguishability properties of the input-output mappings and , which are determined by the measured output data at and , respectively. In this study, we conclude that the distinguishability of the input-output mappings and holds, which implies the injectivity of the inverse mappings and . This provides the insight that compared to the Dirichlet type, the Neumann-type measured output data is more effective for the inverse problems of determining unknown coefficients. Moreover, the measured output data and are obtained analytically by a series representation, which leads to the explicit form of the input-output mappings and . We also show that the value of the unknown coefficient at is determined by using the Neumann-type measured output data at , which brings more restrictions on the set of admissible coefficients. However, is not obtained by the Dirichlet-type measured output data at . This provides the insight that the Neumann-type measured output data is more effective than that of Dirichlet type for the inverse problems of determining an unknown coefficient. This work advances our understanding of the use of the Fourier method of separation of variables and the input-output mapping in the investigation of inverse problems for fractional parabolic equations. The author plans to consider various fractional inverse problems in future studies, since the method discussed has a wide range of applications.
References
Canon J, Lin Y: An inverse problem of finding a parameter in a semi-linear heat equation. J. Math. Anal. Appl. 1990, 145: 470-484. 10.1016/0022-247X(90)90414-B
Canon J, Lin Y:Determination of a parameter in some quasi-linear parabolic differential equations. Inverse Probl. 1998, 4: 35-44.
Canon J, Lin Y: Determination of source parameter in parabolic equations. Meccanica 1992, 27: 85-94. 10.1007/BF00420586
Dehgan M: Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement. Numer. Methods Partial Differ. Equ. 2004, 21: 621-622.
Demir A, Ozbilge E: Analysis of a semigroup approach in the inverse problem of identifying an unknown coefficient. Math. Methods Appl. Sci. 2008, 31: 1635-1645. 10.1002/mma.989
Demir A, Ozbilge E: Semigroup approach for identification of the unknown coefficient in a quasi-linear parabolic equation. Math. Methods Appl. Sci. 2007, 30: 1283-1294. 10.1002/mma.837
Demir A, Hasanov A: Identification of the unknown diffusion coefficient in a linear parabolic equation by the semigroup approach. J. Math. Anal. Appl. 2008, 340: 5-15. 10.1016/j.jmaa.2007.08.004
Fatullayev A: Numerical procedure for the simultaneous determination of unknown coefficients in a parabolic equation. Appl. Math. Comput. 2005, 164: 697-705. 10.1016/j.amc.2004.04.112
Isakov V: Inverse Problems for Partial Differential Equations. Springer, New York; 1998.
Renardy M, Rogers RC: An Introduction to Partial Differential Equations. Springer, New York; 2004.
Showalter RE: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. Am. Math. Soc., Providence; 1997.
Luchko Y: Initial boundary value problems for the one dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 2012, 15: 141-160. 10.2478/s13540-012-0010-7
Acknowledgements
The research was supported in part by the Scientific and Technical Research Council (TUBITAK) of Turkey and Izmir University of Economics.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ozbilge, E., Demir, A. Analysis of the inverse problem in a time fractional parabolic equation with mixed boundary conditions. Bound Value Probl 2014, 134 (2014). https://doi.org/10.1186/1687-2770-2014-134
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-2770-2014-134
Keywords
- Inverse Problem
- Fractional Differential Equation
- Parabolic Problem
- Unknown Coefficient
- Mixed Boundary Condition