- Research
- Open Access
- Published:
Symmetric positive solutions of higher-order boundary value problems
Boundary Value Problems volume 2014, Article number: 78 (2014)
Abstract
We study the higher-order boundary value problems. The existence of symmetric positive solutions of the problem is discussed. Our results extend some recent work in the literature. The analysis of this paper mainly relies on the monotone iterative technique.
MSC:34B15, 34B18.
1 Introduction
We study the boundary value problem (BVP)
where is an integer, is continuous, , are nonnegative constants, , . may be singular at , (and/or ). If a function is continuous and satisfies for , then we say that is symmetric on . By a symmetric positive solution of BVP (1.1) we mean a symmetric function such that for and satisfies (1.1).
In recent years, many authors have studied BVP (1.1), they only considered that f is nondecreasing or nonincreasing in u, or the boundary condition depends only on derivatives of even orders; see [1–8] and references cited therein. To the best of the author’s knowledge, there is no such results involving (1.1). In this note, we intend to fill in such gaps in the literature.
The organization of this paper is as follows. After this introduction, in Section 2, we state the assumptions and some preliminary lemmas. By applying the monotone iterative technique, we discuss the existence of symmetric positive solutions for (1.1) and obtain the main results in Section 3.
2 Preliminaries
For convenience, in this paper we let , ,
where , and define
Remark 2.1 The set P is not a cone as it is not closed.
Throughout this paper, we assume the following:
(H1) , are nonnegative constants, , . is continuous and symmetric in t, i.e., f satisfies
(H2) For , is nondecreasing in u and there exists a constant such that if , then
(H2′) For , is nonincreasing in u and there exists a constant such that if , then
(H3) .
Example 2.1 Consider the equation
It is easy to see that the function f satisfies assumptions (H1) and (H2). In fact, if , there exists constant λ with such that .
Remark 2.2 It is easy to see that (H2) implies that if , then
and (H2′) implies that if , then
Now, we present several lemmas that will be used in the proof of our results. By routine calculations we have the following results.
Lemma 2.1 Let v be integrable on , then the BVP
has a unique solution
where are defined by (2.1).
Lemma 2.2 For any , we have
where , .
3 Main results
Define the operator by
where are defined by (2.1). It is clear that u is a solution of (1.1) if and only if u is a fixed point of T.
Theorem 3.1 Assume (H1)-(H3) hold. Then BVP (1.1) has at least one symmetric positive solution.
Proof
Claim 3.1 is completely continuous and nondecreasing.
In fact, for , it is obvious that , for and . (2.3), (2.9) and a change of variables imply
For any , from (2.4), (2.6), (2.8), and (H3), we have
for , where satisfies
Thus, it follows from (3.3) and (3.4) that , and so . Next by a standard method and the Ascoli-Arzela theorem one can prove that is completely continuous, we omit it here. From (H2), it is easy to see that T is nondecreasing in u. Hence, Claim 3.1 holds.
Claim 3.2 Let be fixed number satisfying
where λ is defined in (H2) in which , and assume
Then
and there exists such that
In fact, since . So, from (3.5) and noting that , . From (3.6), we have and .
On the other hand, from (2.4) and (2.6), we have
Since and T is nondecreasing, by induction, (3.8) holds.
Let , then . It follows from
that, for any natural number n,
Thus, for all natural numbers n and p, we have
which implies that there exists such that (3.9) holds, and Claim 3.2 holds.
Letting in (3.7), we obtain , which is a symmetric positive solution of BVP (1.1), and this completes the proof of the theorem.  □
Theorem 3.2 Assume (H1), (H2′) and (H3) hold. Then BVP (1.1) has at least one symmetric positive solution.
Proof
Claim 3.3 is completely continuous and nonincreasing.
The proof of Claim 3.3 is similar to the proof of Claim 3.1, so this is omitted.
Claim 3.4 Let be fixed number, be sufficiently large constant satisfying
where λ is defined in (H2′) in which , and assume
Then
and there exists such that
In fact, since and . So from (3.11),
From (2.5), (3.10), (3.14), and noting that T is nonincreasing in u, we have
Therefore,
From (3.15), (3.17), (3.18), and noting that is nondecreasing, by induction, (3.12) holds.
On the other hand, from (2.5) and (2.7), for ,
Then from (3.16) and (3.19), we have
and thus
Therefore, for all natural numbers n and p, we have
From (3.20) and (3.21), there exists such that (3.13) holds, and Claim 3.4 holds.
Letting in (3.11), we obtain , which is a symmetric positive solution of BVP (1.1), and this completes the proof of the theorem.  □
Remark 3.1 [3, 5] only considered that f is nondecreasing or nonincreasing in u, and , in (1.1), so our results extend the work in the literature.
Example 3.1 Consider the BVP
where for , , , .
It is easy to see that function satisfies (H1) and (H3). If , there exists constant λ with such that , so (H2) is also satisfied. Therefore, from Theorem 3.1, (3.22) has at least one symmetric positive solution.
References
Dalmasso R: An existence an uniqueness theorem for a second order nonlinear system. J. Math. Anal. Appl. 2007, 327: 715-722. 10.1016/j.jmaa.2006.04.067
Ma HL: Symmetric positive solutions for nonlocal boundary value problems of fourth order. Nonlinear Anal. 2008, 68: 645-651. 10.1016/j.na.2006.11.026
Luo Y, Luo ZG: A necessary and sufficient condition for the existence of symmetric positive solutions of higher-order boundary value problems. Appl. Math. Lett. 2012, 25: 862-868. 10.1016/j.aml.2011.10.033
Liang SH, Zhang JH: Positive solutions of 2 n th-order ordinary differential equations with multi-point boundary conditions. Appl. Math. Comput. 2008, 197: 262-270. 10.1016/j.amc.2007.07.079
Lin XL, Zhao Z: Existence and uniqueness of symmetric positive solutions of 2 n th-order nonlinear singular boundary value problems. Appl. Math. Lett. 2013, 26: 692-698. 10.1016/j.aml.2013.01.007
Trif T: Unique solvability of certain nonlinear boundary value problems via a global inversion theorem of Hadamard-Lévy type. Demonstr. Math. 2005, 38: 331-340.
Yang B: Upper and lower estimates for positive solutions of the higher order Lidstone boundary value problems. J. Math. Anal. Appl. 2011, 382: 290-302. 10.1016/j.jmaa.2011.04.048
Yuan CJ, Wen XD, Jiang DQ: Existence and uniqueness of positive solution for nonlinear singular 2 m th-order continuous and discrete Lidstone boundary value problems. Acta Math. Sin. 2011, 31B: 281-291.
Acknowledgements
Research supported by the Scientific Research Fund of Hunan Provincial Education Department (13C319).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that she has no competing interests.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Luo, Y. Symmetric positive solutions of higher-order boundary value problems. Bound Value Probl 2014, 78 (2014). https://doi.org/10.1186/1687-2770-2014-78
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-2770-2014-78
Keywords
- higher-order boundary value problems
- symmetric positive solutions
- existence
- monotone iterative technique