- Research
- Open access
- Published:
A single exponential BKM type estimate for the 3D incompressible ideal MHD equations
Boundary Value Problems volume 2014, Article number: 96 (2014)
Abstract
In this paper, we give a Beale-Kato-Majda type criterion of strong solutions to the incompressible ideal MHD equations. Instead of double exponential estimates, we get a single exponential bound on (). It can be applied to a system of an ideal viscoelastic flow.
MSC:35B65, 76W05.
1 Introduction
In this paper, we will get the Beale-Kato-Majda type criterion for the breakdown of smooth solutions to the incompressible ideal MHD equations in as follows:
where , , u is the flow velocity, h is the magnetic field, p is the pressure, while and are, respectively, the given initial velocity and initial magnetic field satisfying , .
Using the standard energy method [1], it is well known that for , , there exists a such that the Cauchy problem (1) has a unique smooth solution on satisfying
Recently, Caflisch et al. [2] extended the well-known result of Beale et al. [3] to the 3D ideal MHD equations. More precisely, they showed that if the smooth solution satisfies the following condition:
then the solution can be extended beyond , namely, for some , . Many authors also considered the blow-up criterion of the ideal MHD equations in other spaces; see [4–6] and references therein. More recently, for the following incompressible Euler equations:
with , Chen and Pavlovic [7] showed that if the solution u to (4) satisfies
where , and , then the solution u can be extended beyond . The quantity was introduced by Constantin in [8] (see also the work of Constantin et al. [9]). For the blow-up criterion of incompressible Euler equations, we refer to [7, 10] and references therein.
2 Main results
In this short note, we develop these ideas further and establish an analogous blow-up criterion for solutions of the 3D ideal MHD equations (1). More precisely, we can get the following theorem.
Theorem 2.1 Let be a solution to (1) in the class (2) for . Assume that
where , , and the definition of as above. Then there exists a finite positive constant independent of and t such that
holds for .
Remark 2.1 Using a similar method, we also can get the blow-up criterion result about ideal viscoelastic flow
with , .
Theorem 2.2 Let be a solution to (8) in the class (2) for . Assume that is defined as above, and that
where . Then there exists a finite positive constant independent of and t such that
holds for .
This system arises in the Oldroyd model for an ideal viscoelastic flow, i.e. a viscoelastic fluid whose elastic properties dominate its behavior. Here represents the local deformation gradient of the fluid. The blow-up criterion of the ideal viscoelastic system can be found in [11] and references therein.
3 Proof of Theorem 2.1
For the proof of our main result, firstly we give some properties about the gradient of velocity. Recall that the full gradient of the velocity, ∇u, can be decomposed into symmetric and antisymmetric parts,
where
is called the deformation tensor.
In the following lemmas, we recall some important properties of and without proof [7, 8].
Lemma 3.1 For both the symmetric and the antisymmetric parts , of ∇u, the bound
holds.
The antisymmetric part satisfies
for any vector . The vorticity ω satisfies the identity
(‘’ denotes principal value) where , with . Notably,
where denotes the standard measure on the sphere .
The matrix components of the symmetric part have the form
where are the vector components of ω, and where the integral kernels have the properties
Thus, in particular, is a Calderon-Zygmund operator, for every .
We can also give the following useful lemma to provide an upper bound of singular integral operator for the incompressible Euler equations in [7].
Lemma 3.2 For fixed, and , let be defined as above. Moreover, let () denote the components of the vorticity vector . Then any singular integral operator
with
satisfies
for and the constant C independent of u and t.
Now we are ready to give a proof of Theorem 2.1, which is based on combining an energy estimate for ideal MHD equations with the estimate of .
For , we recall the definitions of the homogeneous and inhomogeneous Besov norms for ,
and
where is the Paley-Littlewood projection of f of scale j. We take the Besov norm of and ; then
Therefore,
However, applying the results of Lemma 3.1 and Lemma 3.2 to u and h, and by the definition of , we obtain
Therefore, we get
for . Thus we complete the proof of Theorem 2.1.
References
Majda AJ Applied Mathematical Sciences 53. In Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York; 1984.
Caflisch RE, Klapper I, Steele G: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 1997, 184: 443-455. 10.1007/s002200050067
Beale JT, Kato T, Majda AJ: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 1984, 94: 61-66. 10.1007/BF01212349
Chen QL, Miao CX, Zhang ZF: On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch. Ration. Mech. Anal. 2010, 195: 561-578. 10.1007/s00205-008-0213-6
Du Y, Liu Y, Yao ZA: Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations. J. Math. Phys. 2009., 50: Article ID 023507
Zhang ZF, Liu XF: On the blow-up criterion of smooth solutions to the 3D ideal MHD equations. Acta Math. Appl. Sinica (Engl. Ser.) 2004, 20: 695-700.
Chen T, Pavlovic N: A lower bound on blowup rates for the 3D incompressible Euler equations and a single exponential Beale-Kato-Majda type estimate. Commun. Math. Phys. 2012, 314: 265-280. 10.1007/s00220-012-1523-y
Constantin P: Geometric statistics in turbulence. SIAM Rev. 1994, 36: 73-98. 10.1137/1036004
Constantin P, Fefferman C, Majda AJ: Geometric constraints on potentially singular solutions for the 3-D Euler equations. Commun. Partial Differ. Equ. 1996, 21: 559-571. 10.1080/03605309608821197
Deng J, Hou TY, Yu X: Improved geometric conditions for non-blowup of the 3D incompressible Euler equation. Commun. Partial Differ. Equ. 2006, 31: 293-306. 10.1080/03605300500358152
Hu XP, Ryan H: Blowup criterion for ideal viscoelastic flow. J. Math. Fluid Mech. 2013, 15: 431-437. 10.1007/s00021-012-0124-z
Acknowledgements
The first author was supported by the Excellent Young Teachers Program of Shanghai, Doctoral Fund of Ministry of Education of China (No. 20133108120002) and The First-class Discipline of Universities in Shanghai. The research of the third author, who is the corresponding author, was supported by the Natural Science Foundation of China (No. 41204082), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120162120036), Special Foundation of China Postdoctoral Science (No. 2013T60781) and Mathematics and Interdisciplinary Sciences Project of Central South University. Moreover, the authors are grateful to anonymous referees for their constructive comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors declare that the work was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.
Rights and permissions
Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, J., Wei, F. & Pan, K. A single exponential BKM type estimate for the 3D incompressible ideal MHD equations. Bound Value Probl 2014, 96 (2014). https://doi.org/10.1186/1687-2770-2014-96
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-2770-2014-96