Skip to main content

Boundary value problems for fractional differential equations

Abstract

In this paper we study the existence of solutions of nonlinear fractional differential equations at resonance. By using the coincidence degree theory, some results on the existence of solutions are obtained.

MSC: 34A08, 34B15.

1 Introduction

In recent years, the fractional differential equations have received more and more attention. The fractional derivative has been occurring in many physical applications such as a non-Markovian diffusion process with memory [1], charge transport in amorphous semiconductors [2], propagations of mechanical waves in viscoelastic media [3], etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and material science are also described by differential equations of fractional order (see [4]–[9]).

Recently boundary value problems (BVPs for short) for fractional differential equations have been studied in many papers (see [10]–[33]).

In [10], by means of a fixed point theorem on a cone, Agarwal et al. considered two-point boundary value problem at nonresonance given by

{ D 0 + α x ( t ) + f ( t , x ( t ) , D 0 + μ x ( t ) ) = 0 , x ( 0 ) = x ( 1 ) = 0 ,

where 1<α<2, μ>0 are real numbers, α−μ≥1 and D 0 + α is the Riemann-Liouville fractional derivative.

Zhao et al.[18] studied the following two-point BVP of fractional differential equations:

{ D 0 + α x ( t ) = f ( t , x ( t ) ) , t ∈ ( 0 , 1 ) , x ( 0 ) = x ′ ( 0 ) = x ′ ( 1 ) = 0 ,

where D 0 + α denotes the Riemann-Liouville fractional differential operator of order α, 2<α≤3. By using the lower and upper solution method and fixed point theorem, they obtained some new existence results.

Liang and Zhang [19] studied the following nonlinear fractional boundary value problem:

{ D 0 + α x ( t ) = f ( t , x ( t ) ) , t ∈ ( 0 , 1 ) , x ( 0 ) = x ′ ( 0 ) = x ″ ( 0 ) = x ″ ( 1 ) = 0 ,

where 3<α≤4 is a real number, D 0 + α is the Riemann-Liouville fractional differential operator of order α. By means of fixed point theorems, they obtained results on the existence of positive solutions for BVPs of fractional differential equations.

In [20], Bai considered the boundary value problem of the fractional order differential equation

{ D 0 + α x ( t ) + a ( t ) f ( t , x ( t ) , x ′ ( t ) ) , t ∈ ( 0 , 1 ) , x ( 0 ) = x ′ ( 0 ) = x ″ ( 0 ) = x ″ ( 1 ) = 0 ,

where 3<α≤4 is a real number, D 0 + α is the Riemann-Liouville fractional differential operator of order α.

Motivated by the above works, in this paper, we consider the following BVP of fractional equation at resonance

{ D 0 + α x ( t ) = f ( t , x ( t ) , x ′ ( t ) , x ″ ( t ) , x ‴ ( t ) ) , t ∈ ( 0 , 1 ) , x ( 0 ) = x ′ ( 0 ) = x ″ ( 0 ) = 0 , x ‴ ( 0 ) = x ‴ ( 1 ) ,
(1.1)

where D 0 + α denotes the Caputo fractional differential operator of order α, 3<α≤4. f:[0,1]× R 4 →×R is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary notations, definitions and lemmas. In Section 3, we establish a theorem on existence of solutions for BVP (1.1) under nonlinear growth restriction of f, basing on the coincidence degree theory due to Mawhin (see [34]). Finally, in Section 4, an example is given to illustrate the main result.

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used throughout this paper.

Let X and Y be real Banach spaces and let L:domL⊂X→Y be a Fredholm operator with index zero, and P:X→X, Q:Y→Y be projectors such that

Im P = Ker L , Ker Q = Im L , X = Ker L ⊕ Ker P , Y = Im L ⊕ Im Q .

It follows that

L | dom L ∩ Ker P :domL∩KerP→ImL

is invertible. We denote the inverse by K P .

If Ω is an open bounded subset of X, and domL∩ Ω ¯ ≠∅, the map N:X→Y will be called L-compact on Ω ¯ if QN( Ω ¯ ) is bounded and K P (I−Q)N: Ω ¯ →X is compact, where I is identity operator.

Lemma 2.1

([34])

If Ω is an open bounded set, letL:domL⊂X→Ybe a Fredholm operator of index zero andN:X→YL-compact on Ω ¯ . Assume that the following conditions are satisfied:

  1. (1)

    Lx≠λNx for every (x,λ)∈[(domL∖KerL)]∩∂Ω×(0,1);

  2. (2)

    Nx∉ImL for every x∈KerL∩∂Ω;

  3. (3)

    deg(QN | Ker L ,KerL∩Ω,0)≠0, where Q:Y→Y is a projection such that ImL=KerQ.

Then the equationLx=Nxhas at least one solution indomL∩ Ω ¯ .

Definition 2.1

The Riemann-Liouville fractional integral operator of order α>0 of a function x is given by

I 0 + α x(t)= 1 Γ ( α ) ∫ 0 t ( t − s ) α − 1 x(s)ds,

provided that the right side integral is pointwise defined on (0,+∞).

Definition 2.2

The Caputo fractional derivative of order α>0 of a function x with x ( n − 1 ) absolutely continuous on [0,1] is given by

D 0 + α x(t)= I 0 + n − α d n x ( t ) d t n = 1 Γ ( n − α ) ∫ 0 t ( t − s ) n − α − 1 x ( n ) (s)ds,

where n=−[−α].

Lemma 2.2

([35])

Letα>0andn=−[−α]. If x ( n − 1 ) ∈AC[0,1], then

I 0 + α D 0 + α x(t)=x(t)− ∑ k = 0 n − 1 x ( k ) ( 0 ) k ! t k .

In this paper, we denote X= C 3 [0,1] with the norm ∥ x ∥ X =max{ ∥ x ∥ ∞ , ∥ x ′ ∥ ∞ , ∥ x ″ ∥ ∞ , ∥ x ‴ ∥ ∞ } and Y=C[0,1] with the norm ∥ y ∥ Y = ∥ y ∥ ∞ , where ∥ x ∥ ∞ = max t ∈ [ 0 , 1 ] |x(t)|. Obviously, both X and Y are Banach spaces.

Define the operator L:domL⊂X→Y by

Lx= D 0 + α x,
(2.1)

where

domL= { x ∈ X ∣ D 0 + α x ( t ) ∈ Y , x ( 0 ) = x ′ ( 0 ) = x ″ ( 0 ) = 0 , x ‴ ( 0 ) = x ‴ ( 1 ) } .

Let N:X→Y be the operator

Nx(t)=f ( t , x ( t ) , x ′ ( t ) , x ″ ( t ) , x ‴ ( t ) ) ,∀t∈[0,1].

Then BVP (1.1) is equivalent to the operator equation

Lx=Nx,x∈domL.

3 Main result

In this section, a theorem on existence of solutions for BVP (1.1) will be given.

Theorem 3.1

Letf:[0,1]× R 4 →Rbe continuous. Assume that

(H1): there exist nonnegative functionsa,b,c,d,e∈C[0,1]withΓ(α−2)−2( b 1 + c 1 + d 1 + e 1 )>0such that

| f ( t , u , v , w , x ) | ≤ a ( t ) + b ( t ) | u | + c ( t ) | v | + d ( t ) | w | + e ( t ) | x | , ∀ t ∈ [ 0 , 1 ] , ( u , v , w , x ) ∈ R 4 ,

where a 1 = ∥ a ∥ ∞ , b 1 = ∥ b ∥ ∞ , c 1 = ∥ c ∥ ∞ , d 1 = ∥ d ∥ ∞ , e 1 = ∥ e ∥ ∞ ;

(H2): there exists a constantB>0such that for allx∈Rwith|x|>Beither

xf(t,u,v,w,x)>0,∀t∈[0,1],(u,v,w)∈ R 3

or

xf(t,u,v,w,x)<0,∀t∈[0,1],(u,v,w)∈ R 3 .

Then BVP (1.1) has at least one solution in X.

Now, we begin with some lemmas below.

Lemma 3.1

Let L be defined by (2.1), then

KerL= { x ∈ X | x ( t ) = x ‴ ( 0 ) 6 t 3 , ∀ t ∈ [ 0 , 1 ] } ,
(3.1)
ImL= { y ∈ Y | ∫ 0 1 ( 1 − s ) α − 4 y ( s ) d s = 0 } .
(3.2)

Proof

By Lemma 2.2, D 0 + α x(t)=0 has solution

x(t)=x(0)+ x ′ (0)t+ x ″ ( 0 ) 2 t 2 + x ‴ ( 0 ) 6 t 3 .

Combining with the boundary value condition of BVP (1.1), one sees that (3.1) holds.

For y∈ImL, there exists x∈domL such that y=Lx∈Y. By Lemma 2.2, we have

x(t)= 1 Γ ( α ) ∫ 0 t ( t − s ) α − 1 y(s)ds+x(0)+ x ′ (0)t+ x ″ ( 0 ) 2 t 2 + x ‴ ( 0 ) 6 t 3 .

Then we have

x ‴ (t)= 1 Γ ( α − 3 ) ∫ 0 t ( t − s ) α − 4 y(s)ds+ x ‴ (0).

By the conditions of BVP (1.1), we see that y satisfies

∫ 0 1 ( 1 − s ) α − 4 y(s)ds=0.

Thus we get (3.2). On the other hand, suppose y∈Y and satisfies ∫ 0 1 ( 1 − s ) α − 4 y(s)ds=0. Let x(t)= I 0 + α y(t), then x∈domL and D 0 + α x(t)=y(t). So y∈ImL. The proof is complete. □

Lemma 3.2

Let L be defined by (2.1), then L is a Fredholm operator of index zero, and the linear continuous projector operatorsP:X→XandQ:Y→Ycan be defined as

P x ( t ) = x ‴ ( 0 ) 6 t 3 , ∀ t ∈ [ 0 , 1 ] , Q y ( t ) = ( α − 3 ) ∫ 0 1 ( 1 − s ) α − 4 y ( s ) d s , ∀ t ∈ [ 0 , 1 ] .

Furthermore, the operator K P :ImL→domL∩KerPcan be written by

K P y(t)= 1 Γ ( α ) ∫ 0 t ( t − s ) α − 1 y(s)ds,∀t∈[0,1].

Proof

Obviously, ImP=KerL and P 2 x=Px. It follows from x=(x−Px)+Px that X=KerP+KerL. By a simple calculation, we get KerL∩KerP={0}. Then we get

X=KerL⊕KerP.

For y∈Y, we have

Q 2 y=Q(Qy)=Qy⋅(α−3) ∫ 0 1 ( 1 − s ) α − 4 ds=Qy.

Let y=(y−Qy)+Qy, where y−Qy∈KerQ=ImL, Qy∈ImQ. It follows from KerQ=ImL and Q 2 y=Qy that ImQ∩ImL={0}. Then we have

Y=ImL⊕ImQ.

Thus

dimKerL=dimImQ=codimImL=1.

This means that L is a Fredholm operator of index zero.

From the definitions of P, K P , it is easy to see that the generalized inverse of L is K P . In fact, for y∈ImL, we have

L K P y= D 0 + α I 0 + α y=y.
(3.3)

Moreover, for x∈domL∩KerP, we get x(0)= x ′ (0)= x ″ (0)= x ‴ (0)=0. By Lemma 2.2, we obtain

I 0 + α Lx(t)= I 0 + α D 0 + α x(t)=x(t)+x(0)+ x ′ (0)t+ x ″ ( 0 ) 2 t 2 + x ‴ ( 0 ) 6 t 3 ,

which together with x(0)= x ′ (0)= x ″ (0)= x ‴ (0)=0 yields

K P Lx=x.
(3.4)

Combining (3.3) with (3.4), we know that K P = ( L | dom L ∩ Ker P ) − 1 . The proof is complete. □

Lemma 3.3

AssumeΩ⊂Xis an open bounded subset such thatdomL∩ Ω ¯ ≠∅, then N is L-compact on Ω ¯ .

Proof

By the continuity of f, we can see that QN( Ω ¯ ) and K P (I−Q)N( Ω ¯ ) are bounded. So, in view of the Arzelà-Ascoli theorem, we need only prove that K P (I−Q)N( Ω ¯ )⊂X is equicontinuous.

From the continuity of f, there exists constant A>0 such that |(I−Q)Nx|≤A, ∀x∈ Ω ¯ , t∈[0,1]. Furthermore, denote K P , Q = K P (I−Q)N and for 0≤ t 1 < t 2 ≤1, x∈ Ω ¯ , we have

| ( K P , Q x ) ( t 2 ) − ( K P , Q x ) ( t 1 ) | ≤ 1 Γ ( α ) | ∫ 0 t 2 ( t 2 − s ) α − 1 ( I − Q ) N x ( s ) d s − ∫ 0 t 1 ( t 1 − s ) α − 1 ( I − Q ) N x ( s ) d s | ≤ A Γ ( α ) [ ∫ 0 t 1 ( t 2 − s ) α − 1 − ( t 1 − s ) α − 1 d s + ∫ t 1 t 2 ( t 2 − s ) α − 1 d s ] = A Γ ( α + 1 ) ( t 2 α − t 1 α ) , | ( K P , Q x ) ′ ( t 2 ) − ( K P , Q x ) ′ ( t 1 ) | ≤ A Γ ( α ) ( t 2 α − 1 − t 1 α − 1 ) , | ( K P , Q x ) ″ ( t 2 ) − ( K P , Q x ) ″ ( t 1 ) | ≤ A Γ ( α − 1 ) ( t 2 α − 2 − t 1 α − 2 ) ,

and

| ( K P , Q x ) ‴ ( t 2 ) − ( K P , Q x ) ‴ ( t 1 ) | = 1 Γ ( α − 3 ) | ∫ 0 t 2 ( t 2 − s ) α − 4 ( I − Q ) N x ( s ) d s − ∫ 0 t 1 ( t 1 − s ) α − 4 ( I − Q ) N x ( s ) d s | ≤ A Γ ( α − 3 ) [ ∫ 0 t 1 ( t 1 − s ) α − 4 − ( t 2 − s ) α − 4 d s + ∫ t 1 t 2 ( t 2 − s ) α − 4 d s ] ≤ A Γ ( α − 2 ) [ t 1 α − 3 − t 2 α − 3 + 2 ( t 2 − t 1 ) α − 3 ] .

Since t α , t α − 1 , t α − 2 , and t α − 3 are uniformly continuous on [0,1], we see that K P , Q ( Ω ¯ )⊂C[0,1], ( K P , Q ) ′ ( Ω ¯ )⊂C[0,1], ( K P , Q ) ″ ( Ω ¯ )⊂C[0,1] and ( K P , Q ) ‴ ( Ω ¯ )⊂C[0,1] are equicontinuous. Thus, we find that K P , Q : Ω ¯ →X is compact. The proof is completed. □

Lemma 3.4

Suppose (H1), (H2) hold, then the set

Ω 1 = { x ∈ dom L ∖ Ker L ∣ L x = λ N x , λ ∈ ( 0 , 1 ) }

is bounded.

Proof

Take x∈ Ω 1 , then Nx∈ImL. By (3.2), we have

∫ 0 1 ( 1 − s ) α − 4 f ( s , x ( s ) , x ′ ( s ) , x ″ ( s ) , x ‴ ( s ) ) ds=0.

Then, by the integral mean value theorem, there exists a constant ξ∈(0,1) such that f(ξ,x(ξ), x ′ (ξ), x ″ (ξ), x ‴ (ξ))=0. Then from (H2), we have | x ‴ (ξ)|≤B.

From x∈domL, we get x(0)=0, x ′ (0)=0, and x ″ (0)=0. Therefore

| x ″ ( t ) | = | x ″ ( 0 ) + ∫ 0 t x ‴ ( s ) d s | ≤ ∥ x ‴ ∥ ∞ , | x ′ ( t ) | = | x ′ ( 0 ) + ∫ 0 t x ″ ( s ) d s | ≤ ∥ x ″ ∥ ∞ ,

and

| x ( t ) | =|x(0)+ ∫ 0 t x ′ (s)ds|≤ ∥ x ′ ∥ ∞ .

That is

∥ x ∥ ∞ ≤ ∥ x ′ ∥ ∞ ≤ ∥ x ″ ∥ ∞ ≤ ∥ x ‴ ∥ ∞ .
(3.5)

By Lx=λNx and x∈domL, we have

x(t)= λ Γ ( α ) ∫ 0 t ( t − s ) α − 1 f ( s , x ( s ) , x ′ ( s ) , x ″ ( s ) , x ‴ ( s ) ) ds+ 1 6 x ‴ (0) t 3 .

Then we get

x ‴ (t)= λ Γ ( α − 3 ) ∫ 0 t ( t − s ) α − 4 f ( s , x ( s ) , x ′ ( s ) , x ″ ( s ) , x ‴ ( s ) ) ds+ x ‴ (0).

Take t=ξ, we get

x ‴ (ξ)= λ Γ ( α − 3 ) ∫ 0 ξ ( ξ − s ) α − 4 f ( s , x ( s ) , x ′ ( s ) , x ″ ( s ) , x ‴ ( s ) ) ds+ x ‴ (0).

Together with | x ‴ (ξ)|≤B, (H1), and (3.5), we have

| x ‴ ( 0 ) | ≤ | x ‴ ( ξ ) | + λ Γ ( α − 3 ) ∫ 0 ξ ( ξ − s ) α − 4 | f ( s , x ( s ) , x ′ ( s ) , x ″ ( s ) , x ‴ ( s ) ) | d s ≤ B + 1 Γ ( α − 3 ) ∫ 0 ξ ( ξ − s ) α − 4 [ a ( s ) + b ( s ) | x ( s ) | + c ( s ) | x ′ ( s ) | + d ( s ) | x ″ ( s ) | + e ( s ) | x ‴ ( s ) | ] d s ≤ B + 1 Γ ( α − 3 ) ∫ 0 ξ ( ξ − s ) α − 4 ( a 1 + b 1 ∥ x ∥ ∞ + c 1 ∥ x ′ ∥ ∞ + d 1 ∥ x ″ ∥ ∞ + e 1 ∥ x ‴ ∥ ∞ ) d s ≤ B + 1 Γ ( α − 3 ) ∫ 0 ξ ( ξ − s ) α − 4 [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) ∥ x ‴ ∥ ∞ ] d s ≤ B + 1 Γ ( α − 2 ) [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) ∥ x ‴ ∥ ∞ ] .

Then we have

∥ x ‴ ∥ ∞ ≤ 1 Γ ( α − 3 ) ∫ 0 t ( t − s ) α − 4 | f ( s , x ( s ) , x ′ ( s ) , x ″ ( s ) , x ‴ ( s ) ) | d s + | x ‴ ( 0 ) | ≤ 1 Γ ( α − 3 ) ∫ 0 t ( t − s ) α − 4 [ a ( s ) + b ( s ) | x ( s ) | + c ( s ) | x ′ ( s ) | + d ( s ) | x ″ ( s ) | + e ( s ) | x ‴ ( s ) | ] d s + x ‴ ( 0 ) ≤ 1 Γ ( α − 3 ) ∫ 0 t ( t − s ) α − 4 ( a 1 + b 1 ∥ x ∥ ∞ + c 1 ∥ x ′ ∥ ∞ + d 1 ∥ x ″ ∥ ∞ + e 1 ∥ x ‴ ∥ ∞ ) d s + | x ‴ ( 0 ) | ≤ 1 Γ ( α − 3 ) ∫ 0 t ( t − s ) α − 4 [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) ∥ x ‴ ∥ ∞ ] d s + | x ‴ ( 0 ) | ≤ 1 Γ ( α − 2 ) [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) ∥ x ‴ ∥ ∞ ] + | x ‴ ( 0 ) | ≤ B + 2 Γ ( α − 2 ) [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) ∥ x ‴ ∥ ∞ ] .

Thus, from Γ(α−2)−2( b 1 + c 1 + d 1 + e 1 )>0, we obtain

∥ x ‴ ∥ ∞ ≤ 2 a 1 + Γ ( α − 2 ) B Γ ( α − 2 ) − 2 ( b 1 + c 1 + d 1 + e 1 ) := M 1 .

Thus, together with (3.5), we get

∥ x ∥ ∞ ≤ ∥ x ′ ∥ ∞ ≤ ∥ x ″ ∥ ∞ ≤ ∥ x ‴ ∥ ∞ ≤ M 1 .

Therefore,

∥ x ∥ X ≤ M 1 .

So Ω 1 is bounded. The proof is complete. □

Lemma 3.5

Suppose (H2) holds, then the set

Ω 2 ={x∣x∈KerL,Nx∈ImL}

is bounded.

Proof

For x∈ Ω 2 , we have x(t)= x ‴ ( 0 ) 6 t 3 and Nx∈ImL. Then we get

∫ 0 1 ( 1 − s ) α − 4 f ( s , x ‴ ( 0 ) 6 s 3 , x ‴ ( 0 ) 2 s 2 , x ‴ ( 0 ) s , x ‴ ( 0 ) ) ds=0,

which together with (H2) implies | x ‴ (0)|≤B. Thus, we have

∥ x ∥ X ≤B.

Hence, Ω 2 is bounded. The proof is complete. □

Lemma 3.6

Suppose the first part of (H2) holds, then the set

Ω 3 = { x ∣ x ∈ Ker L , λ x + ( 1 − λ ) Q N x = 0 , λ ∈ [ 0 , 1 ] }

is bounded.

Proof

For x∈ Ω 3 , we have x(t)= x ‴ ( 0 ) 6 t 3 and

λ x ‴ ( 0 ) 6 t 3 + ( 1 − λ ) ( α − 3 ) × ∫ 0 1 ( 1 − s ) α − 4 f ( s , x ‴ ( 0 ) 6 s 3 , x ‴ ( 0 ) 2 s 2 , x ‴ ( 0 ) s , x ‴ ( 0 ) ) d s = 0 .
(3.6)

If λ=0, then | x ‴ (0)|≤B because of the first part of (H2). If λ∈(0,1], we can also obtain | x ‴ (0)|≤B. Otherwise, if | x ‴ (0)|>B, in view of the first part of (H2), one has

λ [ x ‴ ( 0 ) ] 2 6 t 3 + ( 1 − λ ) ( α − 3 ) × ∫ 0 1 ( 1 − s ) α − 4 x ‴ ( 0 ) f ( s , x ‴ ( 0 ) 6 s 3 , x ‴ ( 0 ) 2 s 2 , x ‴ ( 0 ) s , x ‴ ( 0 ) ) d s > 0 ,

which contradicts (3.6).

Therefore, Ω 3 is bounded. The proof is complete. □

Remark 3.1

Suppose the second part of (H2) hold, then the set

Ω 3 ′ = { x ∣ x ∈ Ker L , − λ x + ( 1 − λ ) Q N x = 0 , λ ∈ [ 0 , 1 ] }

is bounded.

Proof of Theorem 3.1

Set Ω={x∈X∣ ∥ x ∥ X <max{ M 1 ,B}+1}. It follows from Lemmas 3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-compact on Ω ¯ . By Lemmas 3.4 and 3.5, we see that the following two conditions are satisfied:

  1. (1)

    Lx≠λNx for every (x,λ)∈[(domL∖KerL)∩∂Ω]×(0,1);

  2. (2)

    Nx∉ImL for every x∈KerL∩∂Ω.

Take

H(x,λ)=±λx+(1−λ)QNx.

According to Lemma 3.6 (or Remark 3.1), we know that H(x,λ)≠0 for x∈KerL∩∂Ω. Therefore

deg ( Q N | Ker L , Ω ∩ Ker L , 0 ) = deg ( H ( ⋅ , 0 ) , Ω ∩ Ker L , 0 ) = deg ( H ( ⋅ , 1 ) , Ω ∩ Ker L , 0 ) = deg ( ± I , Ω ∩ Ker L , 0 ) ≠ 0 .

So the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we find that Lx=Nx has at least one solution in domL∩ Ω ¯ . Therefore, BVP (1.1) has at least one solution. The proof is complete. □

4 An example

Example 4.1

Consider the following BVP:

{ D 0 + 7 2 x ( t ) = 1 16 ( x ‴ − 10 ) + t 2 16 e − | x ′ | − | x ″ | + t 3 16 sin ( x 2 ) , t ∈ [ 0 , 1 ] , x ( 0 ) = x ′ ( 0 ) = x ″ ( 0 ) = 0 , x ‴ ( 0 ) = x ‴ ( 1 ) .
(4.1)

Here

f(t,u,v,w,x)= 1 16 (x−10)+ t 2 16 e − | v | − | w | + t 3 16 sin ( u 2 ) .

Choose a(t)= 3 4 , b(t)=0, c(t)=0, d(t)=0, e(t)= 1 16 , B=10. We get b 1 =0, c 1 =0, d 1 =0, e 1 = 1 16 , and

Γ ( 7 2 − 2 ) −2( b 1 + c 1 + d 1 + e 1 )>0.

Then all conditions of Theorem 3.1 hold, so BVP (4.1) has at least one solution.

References

  1. Metzler R, Klafter J: Boundary value problems for fractional diffusion equations. Physica A 2000, 278: 107-125. 10.1016/S0378-4371(99)00503-8

    Article  MathSciNet  Google Scholar 

  2. Scher H, Montroll E: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 1975, 12: 2455-2477. 10.1103/PhysRevB.12.2455

    Article  Google Scholar 

  3. Mainardi F: Fractional diffusive waves in viscoelastic solids. In Nonlinear Waves in Solids Edited by: Wegner JL, Norwood FR. 1995, 93-97. Fairfield

    Google Scholar 

  4. Meral FC, Royston TJ, Magin R: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15(4):939-945. 10.1016/j.cnsns.2009.05.004

    Article  MathSciNet  Google Scholar 

  5. Gaul L, Klein P, Kempfle S: Damping description involving fractional operators. Mech. Syst. Signal Process. 1991, 5: 81-88. 10.1016/0888-3270(91)90016-X

    Article  Google Scholar 

  6. Glockle WG, Nonnenmacher TF: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 1995, 68: 46-53. 10.1016/S0006-3495(95)80157-8

    Article  Google Scholar 

  7. Mainardi F: Fractional calculus: some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics. Edited by: Carpinteri A, Mainardi F. Springer, Wien; 1997:291-348. 10.1007/978-3-7091-2664-6_7

    Chapter  Google Scholar 

  8. Metzler F, Schick W, Kilian HG, Nonnenmacher TF: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 1995, 103: 7180-7186. 10.1063/1.470346

    Article  Google Scholar 

  9. Weitzner H, Zaslavsky GM: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 2003, 8(3-4):273-281. 10.1016/S1007-5704(03)00049-2

    Article  MathSciNet  Google Scholar 

  10. Agarwal RP, O’Regan D, Stanek S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 2010, 371: 57-68. 10.1016/j.jmaa.2010.04.034

    Article  MathSciNet  Google Scholar 

  11. Agarwal RP, Benchohra M, Hamani S: Boundary value problems for fractional differential equations. Georgian Math. J. 2009, 16: 401-411.

    MathSciNet  Google Scholar 

  12. Jafari H, Gejji VD: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 2006, 180: 700-706. 10.1016/j.amc.2006.01.007

    Article  MathSciNet  Google Scholar 

  13. Hu Z, Liu W: Solvability for fractional order boundary value problems at resonance. Bound. Value Probl. 2011., 2011: 10.1186/1687-2770-2011-20

    Google Scholar 

  14. Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71: 2391-2396. 10.1016/j.na.2009.01.073

    Article  MathSciNet  Google Scholar 

  15. Al-Mdallal M, Syam MI, Anwar MN: A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15(12):3814-3822. 10.1016/j.cnsns.2010.01.020

    Article  MathSciNet  Google Scholar 

  16. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006., 2006:

    Google Scholar 

  17. Kosmatov N: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 2010., 2010:

    Google Scholar 

  18. Zhao Y, Sun S, Han Z, Li Q: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16: 2086-2097. 10.1016/j.cnsns.2010.08.017

    Article  MathSciNet  Google Scholar 

  19. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045

    Article  MathSciNet  Google Scholar 

  20. Bai C: Triple positive solutions for a boundary value problem of nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2008., 2008:

    Google Scholar 

  21. Loghmani GB, Javanmardi S: Numerical methods for sequential fractional differential equations for Caputo operator. Bull. Malays. Math. Soc. 2012, 35(2):315-323.

    MathSciNet  Google Scholar 

  22. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045

    Article  MathSciNet  Google Scholar 

  23. Wei Z, Dong W, Che J: Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. Nonlinear Anal. 2010, 73: 3232-3238. 10.1016/j.na.2010.07.003

    Article  MathSciNet  Google Scholar 

  24. Bai Z, Zhang Y: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 2011, 218(5):1719-1725. 10.1016/j.amc.2011.06.051

    Article  MathSciNet  Google Scholar 

  25. Bai Z: Solvability for a class of fractional m -point boundary value problem at resonance. Comput. Math. Appl. 2011, 62(3):1292-1302. 10.1016/j.camwa.2011.03.003

    Article  MathSciNet  Google Scholar 

  26. Ahmad B, Sivasundaram S: On four-point nonlocal boundary value problems of nonlinear integrodifferential equations of fractional order. Appl. Math. Comput. 2010, 217: 480-487. 10.1016/j.amc.2010.05.080

    Article  MathSciNet  Google Scholar 

  27. Wang G, Ahmad B, Zhang L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74: 792-804. 10.1016/j.na.2010.09.030

    Article  MathSciNet  Google Scholar 

  28. Yang L, Chen H: Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 2010, 23: 1095-1098. 10.1016/j.aml.2010.04.042

    Article  MathSciNet  Google Scholar 

  29. Yang L, Chen H: Nonlocal boundary value problem for impulsive differential equations of fractional order. Adv. Differ. Equ. 2011., 2011:

    Google Scholar 

  30. Jiang W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 2011, 74: 1987-1994. 10.1016/j.na.2010.11.005

    Article  MathSciNet  Google Scholar 

  31. Su X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22: 64-69. 10.1016/j.aml.2008.03.001

    Article  MathSciNet  Google Scholar 

  32. Ahmad B, Alsaedi A: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010., 2010: 10.1155/2010/364560

    Google Scholar 

  33. Zhang Y, Bai Z, Feng T: Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance. Comput. Math. Appl. 2011, 61(4):1032-1047. 10.1016/j.camwa.2010.12.053

    Article  MathSciNet  Google Scholar 

  34. Mawhin J: Topological degree and boundary value problems for nonlinear differential equations. Topological Methods for Ordinary Differential Equations 1993, 74-142. 10.1007/BFb0085076

    Chapter  Google Scholar 

  35. Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees very much for their helpful comments and suggestions. This research was supported by the Fundamental Research Funds for the Central Universities (2013QNA33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Hu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors typed, read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Liu, W. & Liu, J. Boundary value problems for fractional differential equations. Bound Value Probl 2014, 176 (2014). https://doi.org/10.1186/s13661-014-0176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-014-0176-5

Keywords