Open Access

Boundary value problems for fractional differential equations

Boundary Value Problems20142014:176

https://doi.org/10.1186/s13661-014-0176-5

Received: 11 December 2013

Accepted: 1 July 2014

Published: 23 September 2014

Abstract

In this paper we study the existence of solutions of nonlinear fractional differential equations at resonance. By using the coincidence degree theory, some results on the existence of solutions are obtained.

MSC: 34A08, 34B15.

Keywords

fractional differential equationsboundary value problemsresonancecoincidence degree theory

1 Introduction

In recent years, the fractional differential equations have received more and more attention. The fractional derivative has been occurring in many physical applications such as a non-Markovian diffusion process with memory [1], charge transport in amorphous semiconductors [2], propagations of mechanical waves in viscoelastic media [3], etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and material science are also described by differential equations of fractional order (see [4]–[9]).

Recently boundary value problems (BVPs for short) for fractional differential equations have been studied in many papers (see [10]–[33]).

In [10], by means of a fixed point theorem on a cone, Agarwal et al. considered two-point boundary value problem at nonresonance given by
{ D 0 + α x ( t ) + f ( t , x ( t ) , D 0 + μ x ( t ) ) = 0 , x ( 0 ) = x ( 1 ) = 0 ,

where 1 < α < 2 , μ > 0 are real numbers, α μ 1 and D 0 + α is the Riemann-Liouville fractional derivative.

Zhao et al.[18] studied the following two-point BVP of fractional differential equations:
{ D 0 + α x ( t ) = f ( t , x ( t ) ) , t ( 0 , 1 ) , x ( 0 ) = x ( 0 ) = x ( 1 ) = 0 ,

where D 0 + α denotes the Riemann-Liouville fractional differential operator of order α, 2 < α 3 . By using the lower and upper solution method and fixed point theorem, they obtained some new existence results.

Liang and Zhang [19] studied the following nonlinear fractional boundary value problem:
{ D 0 + α x ( t ) = f ( t , x ( t ) ) , t ( 0 , 1 ) , x ( 0 ) = x ( 0 ) = x ( 0 ) = x ( 1 ) = 0 ,

where 3 < α 4 is a real number, D 0 + α is the Riemann-Liouville fractional differential operator of order α. By means of fixed point theorems, they obtained results on the existence of positive solutions for BVPs of fractional differential equations.

In [20], Bai considered the boundary value problem of the fractional order differential equation
{ D 0 + α x ( t ) + a ( t ) f ( t , x ( t ) , x ( t ) ) , t ( 0 , 1 ) , x ( 0 ) = x ( 0 ) = x ( 0 ) = x ( 1 ) = 0 ,

where 3 < α 4 is a real number, D 0 + α is the Riemann-Liouville fractional differential operator of order α.

Motivated by the above works, in this paper, we consider the following BVP of fractional equation at resonance
{ D 0 + α x ( t ) = f ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) ) , t ( 0 , 1 ) , x ( 0 ) = x ( 0 ) = x ( 0 ) = 0 , x ( 0 ) = x ( 1 ) ,
(1.1)

where D 0 + α denotes the Caputo fractional differential operator of order α, 3 < α 4 . f : [ 0 , 1 ] × R 4 × R is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary notations, definitions and lemmas. In Section 3, we establish a theorem on existence of solutions for BVP (1.1) under nonlinear growth restriction of f, basing on the coincidence degree theory due to Mawhin (see [34]). Finally, in Section 4, an example is given to illustrate the main result.

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used throughout this paper.

Let X and Y be real Banach spaces and let L : dom L X Y be a Fredholm operator with index zero, and P : X X , Q : Y Y be projectors such that
Im P = Ker L , Ker Q = Im L , X = Ker L Ker P , Y = Im L Im Q .
It follows that
L | dom L Ker P : dom L Ker P Im L

is invertible. We denote the inverse by K P .

If Ω is an open bounded subset of X, and dom L Ω ¯ , the map N : X Y will be called L-compact on Ω ¯ if Q N ( Ω ¯ ) is bounded and K P ( I Q ) N : Ω ¯ X is compact, where I is identity operator.

Lemma 2.1

([34])

If Ω is an open bounded set, let L : dom L X Y be a Fredholm operator of index zero and N : X Y L-compact on Ω ¯ . Assume that the following conditions are satisfied:
  1. (1)

    L x λ N x for every ( x , λ ) [ ( dom L Ker L ) ] Ω × ( 0 , 1 ) ;

     
  2. (2)

    N x Im L for every x Ker L Ω ;

     
  3. (3)

    deg ( Q N | Ker L , Ker L Ω , 0 ) 0 , where Q : Y Y is a projection such that Im L = Ker Q .

     

Then the equation L x = N x has at least one solution in dom L Ω ¯ .

Definition 2.1

The Riemann-Liouville fractional integral operator of order α > 0 of a function x is given by
I 0 + α x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 x ( s ) d s ,

provided that the right side integral is pointwise defined on ( 0 , + ) .

Definition 2.2

The Caputo fractional derivative of order α > 0 of a function x with x ( n 1 ) absolutely continuous on [ 0 , 1 ] is given by
D 0 + α x ( t ) = I 0 + n α d n x ( t ) d t n = 1 Γ ( n α ) 0 t ( t s ) n α 1 x ( n ) ( s ) d s ,

where n = [ α ] .

Lemma 2.2

([35])

Let α > 0 and n = [ α ] . If x ( n 1 ) A C [ 0 , 1 ] , then
I 0 + α D 0 + α x ( t ) = x ( t ) k = 0 n 1 x ( k ) ( 0 ) k ! t k .

In this paper, we denote X = C 3 [ 0 , 1 ] with the norm x X = max { x , x , x , x } and Y = C [ 0 , 1 ] with the norm y Y = y , where x = max t [ 0 , 1 ] | x ( t ) | . Obviously, both X and Y are Banach spaces.

Define the operator L : dom L X Y by
L x = D 0 + α x ,
(2.1)
where
dom L = { x X D 0 + α x ( t ) Y , x ( 0 ) = x ( 0 ) = x ( 0 ) = 0 , x ( 0 ) = x ( 1 ) } .
Let N : X Y be the operator
N x ( t ) = f ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) ) , t [ 0 , 1 ] .
Then BVP (1.1) is equivalent to the operator equation
L x = N x , x dom L .

3 Main result

In this section, a theorem on existence of solutions for BVP (1.1) will be given.

Theorem 3.1

Let f : [ 0 , 1 ] × R 4 R be continuous. Assume that

(H1): there exist nonnegative functions a , b , c , d , e C [ 0 , 1 ] with Γ ( α 2 ) 2 ( b 1 + c 1 + d 1 + e 1 ) > 0 such that
| f ( t , u , v , w , x ) | a ( t ) + b ( t ) | u | + c ( t ) | v | + d ( t ) | w | + e ( t ) | x | , t [ 0 , 1 ] , ( u , v , w , x ) R 4 ,

where a 1 = a , b 1 = b , c 1 = c , d 1 = d , e 1 = e ;

(H2): there exists a constant B > 0 such that for all x R with | x | > B either
x f ( t , u , v , w , x ) > 0 , t [ 0 , 1 ] , ( u , v , w ) R 3
or
x f ( t , u , v , w , x ) < 0 , t [ 0 , 1 ] , ( u , v , w ) R 3 .

Then BVP (1.1) has at least one solution in X.

Now, we begin with some lemmas below.

Lemma 3.1

Let L be defined by (2.1), then
Ker L = { x X | x ( t ) = x ( 0 ) 6 t 3 , t [ 0 , 1 ] } ,
(3.1)
Im L = { y Y | 0 1 ( 1 s ) α 4 y ( s ) d s = 0 } .
(3.2)

Proof

By Lemma 2.2, D 0 + α x ( t ) = 0 has solution
x ( t ) = x ( 0 ) + x ( 0 ) t + x ( 0 ) 2 t 2 + x ( 0 ) 6 t 3 .

Combining with the boundary value condition of BVP (1.1), one sees that (3.1) holds.

For y Im L , there exists x dom L such that y = L x Y . By Lemma 2.2, we have
x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s + x ( 0 ) + x ( 0 ) t + x ( 0 ) 2 t 2 + x ( 0 ) 6 t 3 .
Then we have
x ( t ) = 1 Γ ( α 3 ) 0 t ( t s ) α 4 y ( s ) d s + x ( 0 ) .
By the conditions of BVP (1.1), we see that y satisfies
0 1 ( 1 s ) α 4 y ( s ) d s = 0 .

Thus we get (3.2). On the other hand, suppose y Y and satisfies 0 1 ( 1 s ) α 4 y ( s ) d s = 0 . Let x ( t ) = I 0 + α y ( t ) , then x dom L and D 0 + α x ( t ) = y ( t ) . So y Im L . The proof is complete. □

Lemma 3.2

Let L be defined by (2.1), then L is a Fredholm operator of index zero, and the linear continuous projector operators P : X X and Q : Y Y can be defined as
P x ( t ) = x ( 0 ) 6 t 3 , t [ 0 , 1 ] , Q y ( t ) = ( α 3 ) 0 1 ( 1 s ) α 4 y ( s ) d s , t [ 0 , 1 ] .
Furthermore, the operator K P : Im L dom L Ker P can be written by
K P y ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s , t [ 0 , 1 ] .

Proof

Obviously, Im P = Ker L and P 2 x = P x . It follows from x = ( x P x ) + P x that X = Ker P + Ker L . By a simple calculation, we get Ker L Ker P = { 0 } . Then we get
X = Ker L Ker P .
For y Y , we have
Q 2 y = Q ( Q y ) = Q y ( α 3 ) 0 1 ( 1 s ) α 4 d s = Q y .
Let y = ( y Q y ) + Q y , where y Q y Ker Q = Im L , Q y Im Q . It follows from Ker Q = Im L and Q 2 y = Q y that Im Q Im L = { 0 } . Then we have
Y = Im L Im Q .
Thus
dim Ker L = dim Im Q = codim Im L = 1 .

This means that L is a Fredholm operator of index zero.

From the definitions of P, K P , it is easy to see that the generalized inverse of L is K P . In fact, for y Im L , we have
L K P y = D 0 + α I 0 + α y = y .
(3.3)
Moreover, for x dom L Ker P , we get x ( 0 ) = x ( 0 ) = x ( 0 ) = x ( 0 ) = 0 . By Lemma 2.2, we obtain
I 0 + α L x ( t ) = I 0 + α D 0 + α x ( t ) = x ( t ) + x ( 0 ) + x ( 0 ) t + x ( 0 ) 2 t 2 + x ( 0 ) 6 t 3 ,
which together with x ( 0 ) = x ( 0 ) = x ( 0 ) = x ( 0 ) = 0 yields
K P L x = x .
(3.4)

Combining (3.3) with (3.4), we know that K P = ( L | dom L Ker P ) 1 . The proof is complete. □

Lemma 3.3

Assume Ω X is an open bounded subset such that dom L Ω ¯ , then N is L-compact on Ω ¯ .

Proof

By the continuity of f, we can see that Q N ( Ω ¯ ) and K P ( I Q ) N ( Ω ¯ ) are bounded. So, in view of the Arzelà-Ascoli theorem, we need only prove that K P ( I Q ) N ( Ω ¯ ) X is equicontinuous.

From the continuity of f, there exists constant A > 0 such that | ( I Q ) N x | A , x Ω ¯ , t [ 0 , 1 ] . Furthermore, denote K P , Q = K P ( I Q ) N and for 0 t 1 < t 2 1 , x Ω ¯ , we have
| ( K P , Q x ) ( t 2 ) ( K P , Q x ) ( t 1 ) | 1 Γ ( α ) | 0 t 2 ( t 2 s ) α 1 ( I Q ) N x ( s ) d s 0 t 1 ( t 1 s ) α 1 ( I Q ) N x ( s ) d s | A Γ ( α ) [ 0 t 1 ( t 2 s ) α 1 ( t 1 s ) α 1 d s + t 1 t 2 ( t 2 s ) α 1 d s ] = A Γ ( α + 1 ) ( t 2 α t 1 α ) , | ( K P , Q x ) ( t 2 ) ( K P , Q x ) ( t 1 ) | A Γ ( α ) ( t 2 α 1 t 1 α 1 ) , | ( K P , Q x ) ( t 2 ) ( K P , Q x ) ( t 1 ) | A Γ ( α 1 ) ( t 2 α 2 t 1 α 2 ) ,
and
| ( K P , Q x ) ( t 2 ) ( K P , Q x ) ( t 1 ) | = 1 Γ ( α 3 ) | 0 t 2 ( t 2 s ) α 4 ( I Q ) N x ( s ) d s 0 t 1 ( t 1 s ) α 4 ( I Q ) N x ( s ) d s | A Γ ( α 3 ) [ 0 t 1 ( t 1 s ) α 4 ( t 2 s ) α 4 d s + t 1 t 2 ( t 2 s ) α 4 d s ] A Γ ( α 2 ) [ t 1 α 3 t 2 α 3 + 2 ( t 2 t 1 ) α 3 ] .

Since t α , t α 1 , t α 2 , and t α 3 are uniformly continuous on [ 0 , 1 ] , we see that K P , Q ( Ω ¯ ) C [ 0 , 1 ] , ( K P , Q ) ( Ω ¯ ) C [ 0 , 1 ] , ( K P , Q ) ( Ω ¯ ) C [ 0 , 1 ] and ( K P , Q ) ( Ω ¯ ) C [ 0 , 1 ] are equicontinuous. Thus, we find that K P , Q : Ω ¯ X is compact. The proof is completed. □

Lemma 3.4

Suppose (H1), (H2) hold, then the set
Ω 1 = { x dom L Ker L L x = λ N x , λ ( 0 , 1 ) }

is bounded.

Proof

Take x Ω 1 , then N x Im L . By (3.2), we have
0 1 ( 1 s ) α 4 f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) ) d s = 0 .

Then, by the integral mean value theorem, there exists a constant ξ ( 0 , 1 ) such that f ( ξ , x ( ξ ) , x ( ξ ) , x ( ξ ) , x ( ξ ) ) = 0 . Then from (H2), we have | x ( ξ ) | B .

From x dom L , we get x ( 0 ) = 0 , x ( 0 ) = 0 , and x ( 0 ) = 0 . Therefore
| x ( t ) | = | x ( 0 ) + 0 t x ( s ) d s | x , | x ( t ) | = | x ( 0 ) + 0 t x ( s ) d s | x ,
and
| x ( t ) | = | x ( 0 ) + 0 t x ( s ) d s | x .
That is
x x x x .
(3.5)
By L x = λ N x and x dom L , we have
x ( t ) = λ Γ ( α ) 0 t ( t s ) α 1 f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) ) d s + 1 6 x ( 0 ) t 3 .
Then we get
x ( t ) = λ Γ ( α 3 ) 0 t ( t s ) α 4 f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) ) d s + x ( 0 ) .
Take t = ξ , we get
x ( ξ ) = λ Γ ( α 3 ) 0 ξ ( ξ s ) α 4 f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) ) d s + x ( 0 ) .
Together with | x ( ξ ) | B , (H1), and (3.5), we have
| x ( 0 ) | | x ( ξ ) | + λ Γ ( α 3 ) 0 ξ ( ξ s ) α 4 | f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) ) | d s B + 1 Γ ( α 3 ) 0 ξ ( ξ s ) α 4 [ a ( s ) + b ( s ) | x ( s ) | + c ( s ) | x ( s ) | + d ( s ) | x ( s ) | + e ( s ) | x ( s ) | ] d s B + 1 Γ ( α 3 ) 0 ξ ( ξ s ) α 4 ( a 1 + b 1 x + c 1 x + d 1 x + e 1 x ) d s B + 1 Γ ( α 3 ) 0 ξ ( ξ s ) α 4 [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) x ] d s B + 1 Γ ( α 2 ) [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) x ] .
Then we have
x 1 Γ ( α 3 ) 0 t ( t s ) α 4 | f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) ) | d s + | x ( 0 ) | 1 Γ ( α 3 ) 0 t ( t s ) α 4 [ a ( s ) + b ( s ) | x ( s ) | + c ( s ) | x ( s ) | + d ( s ) | x ( s ) | + e ( s ) | x ( s ) | ] d s + x ( 0 ) 1 Γ ( α 3 ) 0 t ( t s ) α 4 ( a 1 + b 1 x + c 1 x + d 1 x + e 1 x ) d s + | x ( 0 ) | 1 Γ ( α 3 ) 0 t ( t s ) α 4 [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) x ] d s + | x ( 0 ) | 1 Γ ( α 2 ) [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) x ] + | x ( 0 ) | B + 2 Γ ( α 2 ) [ a 1 + ( b 1 + c 1 + d 1 + e 1 ) x ] .
Thus, from Γ ( α 2 ) 2 ( b 1 + c 1 + d 1 + e 1 ) > 0 , we obtain
x 2 a 1 + Γ ( α 2 ) B Γ ( α 2 ) 2 ( b 1 + c 1 + d 1 + e 1 ) : = M 1 .
Thus, together with (3.5), we get
x x x x M 1 .
Therefore,
x X M 1 .

So Ω 1 is bounded. The proof is complete. □

Lemma 3.5

Suppose (H2) holds, then the set
Ω 2 = { x x Ker L , N x Im L }

is bounded.

Proof

For x Ω 2 , we have x ( t ) = x ( 0 ) 6 t 3 and N x Im L . Then we get
0 1 ( 1 s ) α 4 f ( s , x ( 0 ) 6 s 3 , x ( 0 ) 2 s 2 , x ( 0 ) s , x ( 0 ) ) d s = 0 ,
which together with (H2) implies | x ( 0 ) | B . Thus, we have
x X B .

Hence, Ω 2 is bounded. The proof is complete. □

Lemma 3.6

Suppose the first part of (H2) holds, then the set
Ω 3 = { x x Ker L , λ x + ( 1 λ ) Q N x = 0 , λ [ 0 , 1 ] }

is bounded.

Proof

For x Ω 3 , we have x ( t ) = x ( 0 ) 6 t 3 and
λ x ( 0 ) 6 t 3 + ( 1 λ ) ( α 3 ) × 0 1 ( 1 s ) α 4 f ( s , x ( 0 ) 6 s 3 , x ( 0 ) 2 s 2 , x ( 0 ) s , x ( 0 ) ) d s = 0 .
(3.6)
If λ = 0 , then | x ( 0 ) | B because of the first part of (H2). If λ ( 0 , 1 ] , we can also obtain | x ( 0 ) | B . Otherwise, if | x ( 0 ) | > B , in view of the first part of (H2), one has
λ [ x ( 0 ) ] 2 6 t 3 + ( 1 λ ) ( α 3 ) × 0 1 ( 1 s ) α 4 x ( 0 ) f ( s , x ( 0 ) 6 s 3 , x ( 0 ) 2 s 2 , x ( 0 ) s , x ( 0 ) ) d s > 0 ,

which contradicts (3.6).

Therefore, Ω 3 is bounded. The proof is complete. □

Remark 3.1

Suppose the second part of (H2) hold, then the set
Ω 3 = { x x Ker L , λ x + ( 1 λ ) Q N x = 0 , λ [ 0 , 1 ] }

is bounded.

Proof of Theorem 3.1

Set Ω = { x X x X < max { M 1 , B } + 1 } . It follows from Lemmas 3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-compact on Ω ¯ . By Lemmas 3.4 and 3.5, we see that the following two conditions are satisfied:
  1. (1)

    L x λ N x for every ( x , λ ) [ ( dom L Ker L ) Ω ] × ( 0 , 1 ) ;

     
  2. (2)

    N x Im L for every x Ker L Ω .

     
Take
H ( x , λ ) = ± λ x + ( 1 λ ) Q N x .
According to Lemma 3.6 (or Remark 3.1), we know that H ( x , λ ) 0 for x Ker L Ω . Therefore
deg ( Q N | Ker L , Ω Ker L , 0 ) = deg ( H ( , 0 ) , Ω Ker L , 0 ) = deg ( H ( , 1 ) , Ω Ker L , 0 ) = deg ( ± I , Ω Ker L , 0 ) 0 .

So the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we find that L x = N x has at least one solution in dom L Ω ¯ . Therefore, BVP (1.1) has at least one solution. The proof is complete. □

4 An example

Example 4.1

Consider the following BVP:
{ D 0 + 7 2 x ( t ) = 1 16 ( x 10 ) + t 2 16 e | x | | x | + t 3 16 sin ( x 2 ) , t [ 0 , 1 ] , x ( 0 ) = x ( 0 ) = x ( 0 ) = 0 , x ( 0 ) = x ( 1 ) .
(4.1)
Here
f ( t , u , v , w , x ) = 1 16 ( x 10 ) + t 2 16 e | v | | w | + t 3 16 sin ( u 2 ) .
Choose a ( t ) = 3 4 , b ( t ) = 0 , c ( t ) = 0 , d ( t ) = 0 , e ( t ) = 1 16 , B = 10 . We get b 1 = 0 , c 1 = 0 , d 1 = 0 , e 1 = 1 16 , and
Γ ( 7 2 2 ) 2 ( b 1 + c 1 + d 1 + e 1 ) > 0 .

Then all conditions of Theorem 3.1 hold, so BVP (4.1) has at least one solution.

Declarations

Acknowledgements

The authors would like to thank the referees very much for their helpful comments and suggestions. This research was supported by the Fundamental Research Funds for the Central Universities (2013QNA33).

Authors’ Affiliations

(1)
Department of Mathematics, China University of Mining and Technology, Xuzhou, China

References

  1. Metzler R, Klafter J: Boundary value problems for fractional diffusion equations. Physica A 2000, 278: 107-125. 10.1016/S0378-4371(99)00503-8MathSciNetView ArticleGoogle Scholar
  2. Scher H, Montroll E: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 1975, 12: 2455-2477. 10.1103/PhysRevB.12.2455View ArticleGoogle Scholar
  3. Mainardi F: Fractional diffusive waves in viscoelastic solids. In Nonlinear Waves in Solids Edited by: Wegner JL, Norwood FR. 1995, 93-97. FairfieldGoogle Scholar
  4. Meral FC, Royston TJ, Magin R: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15(4):939-945. 10.1016/j.cnsns.2009.05.004MathSciNetView ArticleGoogle Scholar
  5. Gaul L, Klein P, Kempfle S: Damping description involving fractional operators. Mech. Syst. Signal Process. 1991, 5: 81-88. 10.1016/0888-3270(91)90016-XView ArticleGoogle Scholar
  6. Glockle WG, Nonnenmacher TF: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 1995, 68: 46-53. 10.1016/S0006-3495(95)80157-8View ArticleGoogle Scholar
  7. Mainardi F: Fractional calculus: some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics. Edited by: Carpinteri A, Mainardi F. Springer, Wien; 1997:291-348. 10.1007/978-3-7091-2664-6_7View ArticleGoogle Scholar
  8. Metzler F, Schick W, Kilian HG, Nonnenmacher TF: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 1995, 103: 7180-7186. 10.1063/1.470346View ArticleGoogle Scholar
  9. Weitzner H, Zaslavsky GM: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 2003, 8(3-4):273-281. 10.1016/S1007-5704(03)00049-2MathSciNetView ArticleGoogle Scholar
  10. Agarwal RP, O’Regan D, Stanek S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 2010, 371: 57-68. 10.1016/j.jmaa.2010.04.034MathSciNetView ArticleGoogle Scholar
  11. Agarwal RP, Benchohra M, Hamani S: Boundary value problems for fractional differential equations. Georgian Math. J. 2009, 16: 401-411.MathSciNetGoogle Scholar
  12. Jafari H, Gejji VD: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 2006, 180: 700-706. 10.1016/j.amc.2006.01.007MathSciNetView ArticleGoogle Scholar
  13. Hu Z, Liu W: Solvability for fractional order boundary value problems at resonance. Bound. Value Probl. 2011., 2011: 10.1186/1687-2770-2011-20Google Scholar
  14. Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71: 2391-2396. 10.1016/j.na.2009.01.073MathSciNetView ArticleGoogle Scholar
  15. Al-Mdallal M, Syam MI, Anwar MN: A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15(12):3814-3822. 10.1016/j.cnsns.2010.01.020MathSciNetView ArticleGoogle Scholar
  16. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006., 2006:Google Scholar
  17. Kosmatov N: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 2010., 2010:Google Scholar
  18. Zhao Y, Sun S, Han Z, Li Q: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16: 2086-2097. 10.1016/j.cnsns.2010.08.017MathSciNetView ArticleGoogle Scholar
  19. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045MathSciNetView ArticleGoogle Scholar
  20. Bai C: Triple positive solutions for a boundary value problem of nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2008., 2008:Google Scholar
  21. Loghmani GB, Javanmardi S: Numerical methods for sequential fractional differential equations for Caputo operator. Bull. Malays. Math. Soc. 2012, 35(2):315-323.MathSciNetGoogle Scholar
  22. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045MathSciNetView ArticleGoogle Scholar
  23. Wei Z, Dong W, Che J: Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. Nonlinear Anal. 2010, 73: 3232-3238. 10.1016/j.na.2010.07.003MathSciNetView ArticleGoogle Scholar
  24. Bai Z, Zhang Y: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 2011, 218(5):1719-1725. 10.1016/j.amc.2011.06.051MathSciNetView ArticleGoogle Scholar
  25. Bai Z: Solvability for a class of fractional m -point boundary value problem at resonance. Comput. Math. Appl. 2011, 62(3):1292-1302. 10.1016/j.camwa.2011.03.003MathSciNetView ArticleGoogle Scholar
  26. Ahmad B, Sivasundaram S: On four-point nonlocal boundary value problems of nonlinear integrodifferential equations of fractional order. Appl. Math. Comput. 2010, 217: 480-487. 10.1016/j.amc.2010.05.080MathSciNetView ArticleGoogle Scholar
  27. Wang G, Ahmad B, Zhang L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74: 792-804. 10.1016/j.na.2010.09.030MathSciNetView ArticleGoogle Scholar
  28. Yang L, Chen H: Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 2010, 23: 1095-1098. 10.1016/j.aml.2010.04.042MathSciNetView ArticleGoogle Scholar
  29. Yang L, Chen H: Nonlocal boundary value problem for impulsive differential equations of fractional order. Adv. Differ. Equ. 2011., 2011:Google Scholar
  30. Jiang W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 2011, 74: 1987-1994. 10.1016/j.na.2010.11.005MathSciNetView ArticleGoogle Scholar
  31. Su X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22: 64-69. 10.1016/j.aml.2008.03.001MathSciNetView ArticleGoogle Scholar
  32. Ahmad B, Alsaedi A: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010., 2010: 10.1155/2010/364560Google Scholar
  33. Zhang Y, Bai Z, Feng T: Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance. Comput. Math. Appl. 2011, 61(4):1032-1047. 10.1016/j.camwa.2010.12.053MathSciNetView ArticleGoogle Scholar
  34. Mawhin J: Topological degree and boundary value problems for nonlinear differential equations. Topological Methods for Ordinary Differential Equations 1993, 74-142. 10.1007/BFb0085076View ArticleGoogle Scholar
  35. Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.Google Scholar

Copyright

© Hu et al.; licensee Springer 2014

This article is published under license to BioMed Central Ltd.Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.