 Research
 Open
 Published:
Positive decaying solutions for differential equations with phiLaplacian
Boundary Value Problemsvolume 2015, Article number: 95 (2015)
Abstract
We solve a nonlocal boundary value problem on the halfclose interval $[1,\infty)$ associated to the differential equation $(a(t)\vert x^{\prime} \vert ^{\alpha} \operatorname {sgn}x^{\prime} )^{\prime }+b(t)\vert x\vert ^{\beta} \operatorname {sgn}x=0$, in the superlinear case $\alpha<\beta$. By using a new approach, based on a special energytype function E, the existence of slowly decaying solutions is examined too.
Introduction
Consider the EmdenFowler type differential equation
where $0<\alpha<\beta$ and b is a positive continuous function on $[1,\infty)$ satisfying
Jointly with (1) consider also the more general equation
where a is a positive continuous function on $[1,\infty)$ such that
Equations (1) and (3) arise in the study of radially symmetric solutions of elliptic differential equations with phiLaplacian operator in $\mathbb{R}^{3}$; see, e.g., [1, 2].
By a solution of (3) we mean a differentiable function x on an interval $I_{x}\subseteq{}[1,\infty)$, such that $a(\cdot)\vert x^{\prime }(\cdot)\vert ^{\alpha}$ is continuously differentiable and satisfies (3) on $I_{x}$. In addition, x is called local solution if $I_{x}$ is bounded and proper solution if $I_{x}$ is unbounded and $\sup \{ \vert x(t)\vert :t\geq T \} >0$ for any large $T\geq1$. As usual, a proper solution of (3) is said to be oscillatory if it has a sequence of zeros tending to infinity, otherwise it is said to be nonoscillatory. Equation (3) is said to be oscillatory if any its proper solution is oscillatory.
Define
Let $\mathbb{P}$ be the class of eventually positive proper solutions x of (3). In view of (4), the class $\mathbb{P}$ can be divided into three subclasses, according to the asymptotic behavior of x as $t\rightarrow\infty$, see, e.g., [3], Lemma 1.1. More precisely, any proper solution $x\in\mathbb{P}$ satisfies one of the following asymptotic properties:
where $\ell_{x}$ is a positive constant depending on x.
Let $x, y\in\mathbb{P}$ satisfy (6), (7), respectively. Then x, y tend to zero as $t\rightarrow\infty$ and $0< y(t)< x(t)$ for large t. Hence, proper solutions of (3) satisfying (6) are called slowly decaying solutions, and proper solutions satisfying (7) strongly decaying solutions.
Here, we consider the nonlocal BVP on the halfline $[1,\infty)$
Using a suitable change of variable and certain monotonicity properties of a energytype function E, we prove that (8) has infinitely many solutions. Consequently, we get also a global multiplicity existence result for slowly decaying solutions of (3), which are positive decreasing on the whole interval $[1,\infty)$. We recall that in the superlinear case $\alpha<\beta$, sufficient conditions for existence of slowly decaying solutions are difficult to establish, due to the problem to find sharp upper and lower bounds; see, e.g., [4], p.241, [5], p.3.
Observe that necessary and sufficient conditions for existence of solutions of (3), which satisfy (5) or (7), can easily be produced; see, e.g., [3, 6] or [7], Section 14. Moreover, the same is true for slowly decaying solutions in the sublinear case $\alpha>\beta$; see, e.g., [2, 8]. In the opposite situation, that is, in the superlinear case $\alpha<\beta$, in spite of many examples of equations of type (3) having solutions of type (6), which can be easily produced, until now no general sufficient conditions for their existence are known.
The paper is completed by the solvability of a special BVP, in which also the initial starting point is fixed. Moreover, some examples and suggestions for future research complete the paper.
Our results are also motivated by the papers [9, 10], in which the special case $\alpha=\beta$ is considered. More precisely in [9, 10] necessary and sufficient conditions for existence of slowly decaying solutions for the halflinear equation
are established, according to $\alpha<1$ or $\alpha>1$, respectively.
Recently, BVPs on infinite intervals, associated to equations with phiLaplacian have been considered in [11, 12]. The case of nonlocal BVPs for the generalized Laplacian, has been studied, e.g., in [1, 13]. Finally, we refer the reader to [4, 14] for other references on this topic.
Preliminaries
We start with a change of the independent variable in (3), which will be useful.
Lemma 1
Consider the transformation
where $t(s)$ is the inverse of the function $s(t)$. Then x is a solution of the BVP (8) if and only if u is a solution of
on $[s_{1},\infty)$, $s_{1}=s(1)>0$, and satisfies for $s\geq s_{1}$
where ⋅ denotes the derivative with respect to s.
Moreover, condition (4) is satisfied for (11).
Proof
Using (10), we have
and (3) is transformed into the equation
see also [15], p.946, with minor changes. Multiplying (13) by $s^{2\alpha}$, we obtain (11). Moreover, for (11) assumptions (2) and (4) are satisfied because
and
□
Thus, in view of Lemma 1, in the sequel we will study the existence of solutions x of (1) which satisfy on $[1,\infty)$ the boundary conditions
If x is a solution of (1), then denote by $x^{[1]}$ its quasiderivative, that is,
Moreover, set
and
where c is an arbitrary positive constant. Hence $B(t)>0$ for $t\geq1$.
The following result is needed in the following.
Lemma 2

(i)
Equation (1) has solutions $x\in\mathbb{P}$ which satisfy (5), if and only if $Z<\infty$.

(ii)
Equation (1) has solutions $x\in\mathbb{P}$ which satisfy $\lim_{t\rightarrow\infty}tx(t)=\ell_{x}$, $0<\ell_{x}<\infty$ if and only if $Y<\infty$. Moreover, for any $\ell_{x}$, $0<\ell_{x}<\infty$, there exists $x\in\mathbb{P}$ such that $\lim_{t\rightarrow\infty}tx(t)=\ell_{x}$.

(iii)
Equation (1) is oscillatory if and only if $Y=\infty$.
Proof
Claims (i) and (ii) follow from [3], Theorems 1.1, 1.2, with minor changes. Claim (iii) follows from [3], Theorem 2.2. □
The main result
Our main result deals with the solvability of the nonlocal BVP
under the additional assumption
Remark 1
In the superlinear case $\alpha<\beta$, in virtue of (16), any local solution of (1) is a solution, i.e. it is continuable to infinity and is proper; see, e.g., [16], Theorem 3.2, or [15], Appendix A. Notice also that, under the weaker assumption $b(t)\geq0$, $\sup \{ b(t):t\geq T \} >0$ for any $T\geq1$, there may exist equations of type (1) with uncontinuable solutions; see, e.g., [16], p.343.
The following holds.
Theorem 1
Assume $Z=\infty$. If (16) is satisfied and the function
where
then (BVP) has infinitely many solutions.
To prove this result, several auxiliary results are needed. Define for any solution x of (1) the energytype function
where the quasiderivate $x^{[1]}$ is defined in (14) and
Lemma 3
For any solution x of (1) we have
Proof
Since $x^{[1]}$ is continuously differentiable on $[t_{x},\infty)$, $t_{x}\geq1$, and $t^{2\alpha}x^{[1]}(t)=\vert x^{\prime }(t)\vert ^{\alpha} \operatorname {sgn}x^{\prime}(t)$, the function $x^{\prime}$ is continuously differentiable on $[t_{x},\infty)$ as well. If $x^{\prime}(t)=0$, then the identity (21) is valid. Now, assume $x^{\prime}(t)\neq0$. We have
from which the assertion follows. □
Lemma 4
Assume (16) and (17). Then for any solution x of (1) we have for $t\geq1$
Proof
Let φ be a continuously differentiable function on $[1,\infty)$. Then for any positive constant σ the function $\vert \varphi(t)\vert ^{\sigma+1}$ is continuously differentiable and
Using this equality, we have for $t\geq1$
Hence we get
or
where
and
From (20) we obtain
Thus, we get
and
In view of (17), we have
and so, from (22) we obtain
In order to complete the proof, it is sufficient to show that $h(t)=0$. Using Lemma 3, we have
thus the assertion follows. □
Lemma 5
Assume (16). Then (1) has proper solutions x for which $E_{x}(1)<0$.
Proof
Consider on $[0,\infty)$ the scalar function
where
and m is a positive parameter. A standard calculation shows that when m is sufficiently small, then ϕ attains negative values in a neighborhood of the point
Indeed, consider the local solution x of (1) with the initial condition
In view of Remark 1, x is continuable to infinity and proper. From (19) we obtain
or, in view of (20),
Using (25), we get
From this and $\beta>\alpha$, choosing m sufficiently small such that
we get $\phi(\overline{u})<0$, which is the assertion. □
Proof of Theorem 1
From Lemma 4, the function $E_{x}$ is nonincreasing on $[1,\infty)$ for any solution x of (1).
Fixed m satisfying (27), consider the local solution x of (1) with the initial condition (26), where $\overline{u}$ is given by (25). In view of Remark 1, this solution is also continuable to infinity and proper. Moreover, it is uniquely determined, because in the superlinear case the uniqueness of solutions with respect to the initial conditions holds; see, e.g., [7]. Moreover, in virtue of the proof of Lemma 5, we have $E_{x}(1)<0$, and so, from Lemma 4, we obtain
Let us show that x and $x^{\prime}$ cannot have zeros for $t\geq1$. By contradiction, if there exists $t_{1}>1$ such that $x(t_{1})=0$, then, in virtue of the uniqueness with respect to the initial data, we have $x^{\prime }(t_{1})\neq0$. Hence $E(t_{1})>0$, which contradicts (28). Similarly, if there exists $t_{2}\geq1$ such that $x^{\prime}(t_{2})=0$, we obtain $E(t_{2})>0$, which is again a contradiction.
Thus, x is nonoscillatory. Moreover, in view of Lemma 2, we have
Hence, x is positive decreasing in the halfline $[1,\infty)$, that is,
From (1), the quasiderivative $x^{[1]}$ is negative decreasing, i.e.
If $\ell_{x}<\infty$, we get $\lim_{t\rightarrow\infty}x(t)x^{[1]}(t)=0$, and from (19) we obtain $\liminf_{t\rightarrow\infty}E_{x}(t) \geq 0$, that is, a contradiction with (28). Hence $\ell_{x}=\infty$, i.e.
Using the l’Hospital rule we get
Hence, x is a solution of (BVP). Since there are infinitely many solutions which satisfy (26) with the choice of m taken with (27), the proof is now complete. □
From Theorem 1 and its proof, we get the following.
Corollary 1
Under assumptions of Theorem 1, (1) has infinitely many slowly decaying solutions, which are positive decreasing on the whole interval $[1,\infty)$. Moreover, (1) has also infinitely many strongly decaying solutions and every nonoscillatory solution of (1) tends to zero as $t\rightarrow\infty$.
Proof
In virtue of Theorem 1 and its proof, the boundary value problem (BVP) is solvable by every solution x which satisfies (26) and (27). Clearly, these solutions are slowly decaying solutions.
Consequently, (1) has nonoscillatory solutions and, in view of Lemma 2(iii) we get $Y<\infty$. Then the existence of infinitely many strongly decaying solutions follows from Lemma 2(ii). □
When the monotonicity condition (17) is valid only for large t, reasoning as in the proof of Theorem 1, we obtain the following.
Corollary 2
Assume $Z=\infty$. If (16) is satisfied and the function G, given in (17) is nonincreasing for any large t, then (1) has infinitely many slowly decaying solutions, which are eventually positive decreasing. Moreover, (1) has also infinitely many strongly decaying solutions and every nonoscillatory solution of (1) tends to zero as $t\rightarrow\infty$.
Finally, when also the initial starting point is fixed, we have the following.
Corollary 3
Assume $Z=\infty$. If (16) and (17) are satisfied, then the BVP
has infinitely many solutions for every initial data $x_{1}$ such that
Proof
The assertion follows by a reasoning as in the proof of Theorem 1 and choosing $m=x_{1}$ in (26). Taking into account that m satisfies (27) and $c_{1}$ is given by (24), we get (29). The details are left to the reader. □
Remark 2
It is worth to note that the condition (17) may depend on the choice of the constant c in (15), i.e. on the choice of a primitive to b.
If (17) is satisfied for a fixed B, then (17) remains to hold for $B(t)+\overline{c}$, where $\overline{c}>0$. Indeed, setting $\Psi(t)=t^{2}b^{1}(t)$, from $G^{\prime}(t)\leq0$ we get
or
i.e. (17) is satisfied also for $B(t)+\overline{c}$ with $\overline {c}>0$. However, if (17) is valid for B given by (15), then it is possible that (17) is not valid for $\widetilde{B}(t)=B(t)+\tilde {c}$, where $0<\tilde{c}<c$. This fact is illustrated below in Example 2.
Oscillation and nonoscillation
In this section we discuss assumptions of Theorem 1, jointly with some consequences to the oscillation. Assumption (16) guarantees the continuability at infinity of any solution of (1) and its role is discussed in Remark 1. Concerning the condition $Z=\infty$, a consequence of a result in [17] shows that it is a necessary condition for the solvability of (BVP). The following holds.
Theorem 2
If $Z<\infty$, then (1) does not have solutions $x\in\mathbb{P}$ such that
Proof
Let x be a solution of (1) and set
A standard calculation shows that y is a solution of equation
where $1/\beta<1/\alpha$. From [17], Theorem 4, (31) does not admit eventually positive solutions y such that
that is, in view of (30), (1) does not have solutions $x\in\mathbb{P}$ such that
Since the l’Hospital rule gives
the assertion follows. □
Now, we discuss the monotonicity condition (17). We start by recalling the following nonoscillation result, which is an extension of a wellknown Kiguradze criterion [18], Theorem 18.7.
Theorem 3
([7], Theorem 14.3)
If there exists a positive number ε such that the function
where γ is given in (18), then all solutions of (1) are nonoscillatory.
A standard calculation shows that if (32) holds for $t\geq t_{0}\geq1$, then (17) is valid on the same interval $[t_{0},\infty)$ as well. Thus, in view of Corollary 2, we can obtain an existence result for slowly decaying solutions x of (1). Nevertheless, condition (17) can be valid in a larger interval than $[t_{0},\infty)$. The next example illustrates this fact.
Example 1
Consider the equation
We have $Z=\infty$ and $\gamma=7/4$. Moreover, choosing $c=1$ in (15), for the function G given in (17) we have $G(t)=t^{1/4}$. Then (17) is satisfied for $t\geq1$ and Theorem 1 is applicable. Analogously, (32) is verified for any large t and $0<\varepsilon<1/4$, because
On the other hand, we have
and so (32) is not valid in a right neighborhood of $t=1$. By Theorem 3, all solutions of (33) are nonoscillatory and by Lemma 2 tend to zero as $t\rightarrow\infty$. Moreover, in view of Theorem 1, (33) has both slowly decaying solutions and strongly decaying solutions. Finally, slowly decaying solutions are globally positive on the whole interval $[1,\infty)$.
Example 2
Consider the equation
We have $Z=\infty$ and $\gamma=2$. Choosing $c=1$ in (15), we obtain $G(t)=1$ and Theorem 1 can be applied. Indeed, as it is easy to verify, the function $x(t)=2^{1}t^{1/4}$ is a slowly decaying solution of (34). Moreover, (34) has both slowly decaying solutions and strongly decaying solutions and slowly decaying solutions are globally positive on the whole interval $[1,\infty)$. Observe that if we choose $c=1/2$ in (15), then the corresponding function G is increasing and (17) is not satisfied.
Furthermore, the function $\bar{G}$ given in (32) is increasing for large t and any $\varepsilon>0$. Hence, Theorem 3 cannot be used. Then it is a question whether (34) admits or does not admit oscillatory solutions.
When $\alpha=1$, the coexistence between oscillatory solutions and nonoscillatory solutions can be obtained by using Lemma 2 and a result from [19], Theorem 1. The following holds.
Theorem 4
Consider the equation
where $\beta>1$ and $b(t)>0$ for $t\geq1$. Assume $Y<\infty$. If the function
is nondecreasing for large t and $\lim_{t\rightarrow\infty}H(t)=\infty$, then (35) has infinitely many oscillatory solutions and infinitely many strongly decaying solutions. Moreover, every nonoscillatory solution of (35) tends to zero as $t\rightarrow\infty$.
Proof
In view of [19], Theorem 1, any solution x of (35) which satisfies $x(t_{0})x^{\prime}(t_{0})>0$ at some $t_{0}\geq1$, is oscillatory. The remaining part of the statement follows from Lemma 2. □
The following example shows that both types of nonoscillatory decaying solutions can coexist with oscillatory solutions.
Example 3
Consider the equation
The assumptions in Theorem 4 are satisfied. Hence, (36) has oscillatory solutions and infinitely many strongly decaying solutions. Moreover, every nonoscillatory solution tends to zero as $t\rightarrow\infty$, according to Lemma 2, because $Z=\infty$. Furthermore, it is easy to verify that the function
is a slowly decaying solution of (36). Thus, for (36) slowly decaying solutions and strongly decaying solutions coexist with oscillatory solutions. Observe that for the function G given in (17) we have
where k is a suitable constant such that $k>3/7$. A standard calculation shows that (17) is not satisfied and Theorem 1 cannot be applied. A similar argument shows that also (32) fails.
Open problems
Example 3 suggests that for the existence of at least one slowly decaying solution, the assumption on monotonicity in (17) could be relaxed. Moreover, Example 3 (and Theorem 4) deal with the case $\alpha=1$, that is, when the differential operator is the SturmLiouville disconjugate operator. Does the coexistence between oscillatory solutions and decaying solutions, illustrated in Example 3, occur also when $\alpha\neq1$ (and $\beta>\alpha$)?
References
 1.
Cecchi, M, Došlá, Z, Marini, M: On secondorder differential equations with nonhomogeneous PhiLaplacian. Bound. Value Probl. 2010, Article ID 875675 (2010)
 2.
Kamo, K, Usami, H: Characterization of slowly decaying positive solutions of secondorder quasilinear ordinary differential equations with subhomogeneity. Bull. Lond. Math. Soc. 42, 420428 (2010)
 3.
Kusano, T, Ogata, A, Usami, H: Oscillation theory for a class of second order quasilinear ordinary differential equations with application to partial differential equations. Jpn. J. Math. 19, 131147 (1993)
 4.
Agarwal, RP, Grace, SR, O’Regan, D: Oscillation Theory for Second Order Linear, HalfLinear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic, Dordrecht (2003)
 5.
Kamo, K, Usami, H: Asymptotic forms of weakly increasing positive solutions for quasilinear ordinary differential equations. Electron. J. Differ. Equ. 2007, 126 (2007)
 6.
Cecchi, M, Došlá, Z, Marini, M: Intermediate solutions for EmdenFowler type equations: Continuous versus discrete. Advances Dynam. Systems Appl. 3, 161176 (2008)
 7.
Mirzov, JD: Asymptotic Properties of Solutions of the Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Adygeja Publ., Maikop (1993) (in Russian). English translation in Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., vol. 14, Masaryk University, Brno (2004)
 8.
Kusano, T, Manojlović, JV, Miloŝević, J: Intermediate solutions of second order quasilinear ordinary differential equations in the framework of regular variation. Appl. Math. Comput. 219, 81788191 (2013)
 9.
Cecchi, M, Došlá, Z, Marini, M: On intermediate solutions and the Wronskian for halflinear differential equations. J. Math. Anal. Appl. 336, 905918 (2007)
 10.
Došlá, Z, Vrkoč, I: On extension of the Fubini theorem and its application to the second order differential equations. Nonlinear Anal. 57, 531548 (2004)
 11.
Jeong, J, Kim, CG, Lee, EK: Solvability for nonlocal boundary value problems on a half line with $\operatorname{dim}(\operatorname{ker} L)=2$. Bound. Value Probl. 2014, 167 (2014)
 12.
Wei, Y, Wong, PJY: Existence and uniqueness of solutions for delay boundary value problems with pLaplacian on infinite intervals. Bound. Value Probl. 2013, 141 (2013)
 13.
Cupini, G, Marcelli, C, Papalini, F: On the solvability of a boundary value problem on the real line. Bound. Value Probl. 2011, 26 (2011)
 14.
Agarwal, RP, O’Regan, D: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (2001)
 15.
Yamaoka, N: Oscillation criteria for secondorder damped nonlinear differential equations with pLaplacian. J. Math. Anal. Appl. 325, 932948 (2007)
 16.
Wong, JSW: On the generalized EmdenFowler equation. SIAM Rev. 17, 339360 (1975)
 17.
Došlá, Z, Marini, M: On superlinear EmdenFowler type differential equations. J. Math. Anal. Appl. 416, 497510 (2014)
 18.
Kiguradze, IT, Chanturia, A: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Academic, Dordrecht (1993)
 19.
Bartušek, M, Cecchi, M, Došlá, Z, Marini, M: Global monotonicity and oscillation for second order differential equation. Czechoslov. Math. J. 55, 209222 (2005)
Acknowledgements
The first author is supported by Grant P201/11/0768 of the Czech Science Foundation.
Author information
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final draft.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Received
Accepted
Published
DOI
MSC
 34B40
 34B15
 34B18
Keywords
 nonlinear boundary value problem
 globally positive solution
 decaying solution
 oscillatory solution